
Copyright

by

Roy Hulen Stogner

2008

The Dissertation Committee for Roy Hulen Stogner
certifies that this is the approved version of the following dissertation:

Parallel Adaptive C1 Macro-Elements for Nonlinear

Thin Film and Non-Newtonian Flow Problems

Committee:

Graham F. Carey, Supervisor

Irene M. Gamba

Omar Ghattas

David B. Goldstein

Thomas J.R. Hughes

Jim Stewart

Parallel Adaptive C1 Macro-Elements for Nonlinear

Thin Film and Non-Newtonian Flow Problems

by

Roy Hulen Stogner, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2008

Parallel Adaptive C1 Macro-Elements for Nonlinear

Thin Film and Non-Newtonian Flow Problems

Publication No.

Roy Hulen Stogner, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Graham F. Carey

This research deals with several novel aspects of finite element for-

mulations and methodology in parallel adaptive simulation of flow problems.

Composite macroelement schemes are developed for problems of thin fluid lay-

ers with deforming free surfaces or decomposing material phases; experiments

are also run on divergence-free formulations that can be derived from the same

element classes. The constrained composite nature and C1 continuity require-

ments of these elements raises new issues, especially with respect to adaptive

refinement patterns and the treatment of hanging node constraints, which are

more complex than encountered with standard element types. This work com-

bines such complex elements with these applications and with parallel adaptive

mesh refinement and coarsening (AMR/C) techniques for the first time.

The use of adaptive macroelement spaces also requires appropriate pro-

gramming interfaces and data structures to enable easy and efficient imple-

mentation in parallel software. The algorithms developed for this work are

implemented using object-oriented designs described herein.

iv

One application class of interest concerns heated viscous thin fluid lay-

ers that have a deformable free surface. These problems occur in both normal

scale laboratory and industrial applications and in micro-fluidics. Modeling

this flow via depth averaging gives a nonlinear boundary value problem de-

scribing the transient evolution of the film thickness. The model is dominated

by surface tension effects which are described by a combination of nonlinear

second and fourth-order operators.

This research work also includes studies using the divergence-free forms

constructed from these elements for certain classes of non-Newtonian fluids

such as the Powell-Eyring and Williamson shear-thinning viscosity models. In

addition to the target problems we conduct verification studies in support of

the simulation development.

In the final application investigated, C1 elements are used in conform-

ing finite element approximations of the Cahn-Hilliard phase field model for

moving interface and phase separation problems. The nonlinear Cahn-Hilliard

equation combines anti-diffusive configurational free energy based terms with

a fourth-order interfacial free energy based term. Numerical studies include

both manufactured and physically significant problems, including parametric

studies of directed pattern self-assembly in phase decomposition of thin films.

The main new contributions include construction of C1 and div-free

macroelement classes suitable for AMR/C with nonconforming hanging node

meshes; a posteriori error estimation for fourth-order problems using these

and other element classes; use of projection operators to automate the correct

treatment of constraints at hanging nodes and through AMR/C steps; design

v

of supporting data structures and algorithms for implementation in a parallel

object oriented framework; variational formulations, methodology and numer-

ical experiments with nonlinear fourth-order flow and transport models; and

parametric and Monte Carlo studies of directed phase decomposition.

vi

Table of Contents

Abstract iv

List of Figures x

Chapter 1. Introduction 1

1.1 Research Motivation . 1

1.2 Chapter Overview . 5

1.3 Contributions . 6

Chapter 2. Automatic Macroelement Generation and Use 10

2.1 Introduction . 10

2.2 Macroelements . 12

2.3 Master Basis Function Derivation 14

2.4 Global Degree of Freedom Calculation 17

2.5 A Priori Error Estimates . 18

2.6 Adaptive Refinement on Macroelements 22

Chapter 3. Adaptive Mesh Refinement/Coarsening for Fourth-
order Problems 26

3.1 Adaptive Meshes and Continuity 27

3.2 Projection Operators . 30

3.3 A Posteriori Error Estimation 32

3.4 Adaptive Refinement for Steady Problems 41

3.5 Adaptive Refinement for Transient Problems 42

3.5.1 Adaptive Time Discretization 45

3.6 Biharmonic Benchmark Problem 47

Chapter 4. Software Design 53

4.1 Finite Element Library . 53

4.2 Object Oriented Design Abstractions 54

4.3 Parallel Implementation . 62

4.4 Newton-Krylov Methods . 71

vii

Chapter 5. Divergence-free Flow Problems 79

5.1 Introduction . 79

5.2 Divergence-free finite element spaces 79

5.3 Solution Existence and Uniqueness 81

5.4 Incompressible Navier-Stokes Flow 84

5.5 Shear-dependent Viscosity Models 85

5.6 Penalty Boundary Conditions 87

5.7 Successive Approximation . 87

5.8 Continuation . 88

5.9 Newton-Krylov Methods . 90

5.10 Time-dependent flow . 92

5.11 Unsteady Flow and Transport 94

5.12 Divergence-free Flow Example Results 95

5.13 Transport Results . 99

Chapter 6. Surface Tension Driven Flow of Thin Films 100

6.1 Introduction . 100

6.2 Flow and transport equations 102

6.3 Galerkin formulation . 108

6.4 Thin Film Flow Results . 110

Chapter 7. Cahn-Hilliard Phase Separation 111

7.1 Introduction . 111

7.2 Cahn-Hilliard Equation . 111

7.3 Lyapunov Energy Functional 114

7.4 Galerkin Finite Element Approximation 116

7.5 Lyapunov Energy Functional and Spatial Discretization 118

7.6 Lyapunov Energy Functional and Crank-Nicolson Time Dis-
cretization . 120

7.7 Cahn Hilliard Evolution . 124

7.8 Cross Interface . 124

7.9 Spinodal Decomposition . 126

7.10 Mesh Refinement . 131

7.11 Surface Patterning . 133

7.12 3D Thin Film Patterning . 138

viii

7.13 Solution Postprocessing . 141

7.14 Parametric Studies . 144

7.15 Simulation Performance . 176

Chapter 8. Concluding Remarks 187

Bibliography 191

Vita 210

ix

List of Figures

1.1 Left: A pattern with defects from the experimental literature,
showing phase separated deuterated polystyrene and polybuta-
dine on a monolayer substrate [79]. Right: A Cahn-Hilliard sim-
ulation from the present study with a weak spatially-dependent
surface affinity term, showing similar qualitative behavior. . . 7

2.1 A Hsieh-Clough-Tocher 3-split, a Powell-Sabin-Heindl 12-split,
and two adjacent Powell-Sabin 6-split triangles, with value de-
grees of freedom labeled by circles and derivative degrees of
freedom labeled by arrows. Note the mesh-dependent splitting
required for the 6-split triangle type. 13

2.2 Derivatives in cartesian directions on the master element may
correspond to derivatives in skewed directions on a physical el-
ement. 17

2.3 Galerkin approximation error in L2 and H1 norms, scaled by
the solution norm and evaluated on uniform meshes for the
manufactured benchmark biharmonic problem. 21

2.4 A typical hanging node between Hsieh-Clough-Tocher or Powell-
Sabin-Heindl 12-split triangles. The coarse triangle nodal de-
grees of freedom (purple) match those of the refined neighbors,
but the refined hanging node degrees of freedom (red) do not
match the coarse normal derivative degree of freedom (blue) at
the node, and the refined normal derivative degrees of freedom
have no corresponding coarse degrees of freedom at all. 23

2.5 An isotropic adaptive refinement of a Powell-Sabin-Heindl 12-
split triangle. The subelement node at the edge midpoint of the
coarse triangle must also be a node of the neighboring refined
triangles. 24

3.1 Streamfunction (left) and vorticity (right) for inviscid flow around
a sharp edge. 48

3.2 Galerkin approximation error in L2, H
1, and H2 norms, scaled

by the solution norm and evaluated on both uniform and adap-
tive meshes for the cusp flow problem. 51

3.3 An adaptively refined mesh obtained for the cusp flow problem. 52

4.1 A simplified UML diagram of part of the libMesh geometric
element hierarchy. 56

x

4.2 A simplified UML diagram of part of the libMesh quadrature
rule class hierarchy. 57

4.3 A simplified UML diagram of part of the libMesh finite element
class hierarchy. 58

4.4 A simplified UML diagram including the libMesh FEMSystem
boundary value problem abstract base class. Application code
authors write physics-specific subclasses of FEMSystem to im-
plement particular mathematical models. 59

4.5 A simplified UML diagram of part of the libMesh ODE solver
class hierarchy. 59

4.6 A simplified UML diagram of part of the libMesh nonlinear
algebraic solver class hierarchy. 60

4.7 SerialMesh vs. ParallelMesh per-node resident memory usage,
for a benchmark application using uniformly refined meshes on
varying numbers of processors. 66

4.8 The core loops in a Newton-Krylov solver. 73

4.9 The basic steps in a Brent-based line search for optimal substep
length. 77

5.1 Domain and boundary conditions for lid-driven cavity flow . . 96

5.2 Steady-state streamfunction and vorticity plots for Newtonian
lid-driven cavity flow at Reynolds number 400 96

5.3 Steady-state streamfunction and vorticity plots for Newtonian
lid-driven cavity flow at Reynolds number 1000 97

5.4 Steady-state vorticity plot for Extended Williamson lid-driven
cavity flow at Reynolds number 500 and viscosity ratio 0.1. . . 98

5.5 Error convergence, plotted as L2 and H1 error norms against
number of unconstrained degrees of freedom, for both uniformly
and adaptively refined meshes. 98

5.6 Concentration plots for Newtonian lid-driven cavity flow at Reynolds
number 500, at nondimensionalized times t = 5 and t = 25 . . 99

6.1 Initial surfactant concentration, and a thin film flow solution at
t = 0.2. 110

6.2 Film fluid depth solutions at t = 0.1 and t = 0.2. 110

7.1 Cross benchmark initial conditions and Cahn-Hilliard solutions
at t = 0.025, 0.050, 0.100, 0.200, 0.400. Hermite cubic elements
are each plotted as four bilinear squares. 125

7.2 Initial conditions with random nodal values and zero edge fluxes,
and a Cahn-Hilliard solution at t = 0.001. 127

xi

7.3 Cahn-Hilliard solutions at t = 0.005, 0.01, 0.02, 0.05. The inter-
face widths are now effectively constant, and interface lengths
progressively shorten. 128

7.4 Concentration isosurfaces for a 3D spinodal decomposition prob-
lem at t = 0.033. Separation between the three parallel isosur-
face manifolds is approximately equal to interface width. . . . 129

7.5 Integrated free energy over the square domain for the Galerkin
approximation to a 2D spinodal decomposition problem. . . . 130

7.6 L2 error compared to a reference solution, as a function of time,
for a 2D spinodal decomposition approximated on a sequence
of uniformly refined discretizations 132

7.7 Solutions at t = 0.015 on h1 and h4 grids. The h2 solution is
slightly perturbed from the reference h4 solution, and the h3

solution is visually indistinguishable from h4. 132

7.8 Left: Refined Clough-Tocher mesh and solution in an adaptive
transient Cahn-Hilliard problem, tracking a random spinodal
decomposition at t = 0.4. Right: Refined Hermite mesh and
Cahn-Hilliard solution, progressing from a cross-shaped initial
condition to t = 0.15. 134

7.9 An experimental pattern of deuterated polystyrene and polybu-
tadine on a monolayer substrate [79]. 135

7.10 Patterned spinodal decomposition simulations run with a 4%
and 8% configurational free energy bias amplitudes, at t = 0.5. 136

7.11 Patterned spinodal decomposition simulations run with a 12%
and 16% configurational free energy bias amplitudes, at t = 0.5. 137

7.12 Patterned spinodal decomposition simulations run with a 20%
and 24% configurational free energy bias amplitudes, at t = 0.5. 137

7.13 Concentration isosurfaces in a patterned 3D spinodal decompo-
sition simulation run with a 4% configurational free energy bias
amplitude, at t = 0.125 and t = 0.5. 139

7.14 Concentration isosurfaces in a patterned 3D spinodal decom-
position simulation run with a 16% configurational free energy
bias amplitude, at t = 0.125 and t = 0.5. 140

7.15 Concentration isosurfaces in a patterned thin 3D spinodal de-
composition simulation run with a 4% configurational free en-
ergy bias amplitude, at t = 0.125 and t = 0.5. 140

7.16 The rate of change of the concentration (in H2 norm) plotted
against time, for initial perturbation magnitudes ranging from
0.001 (red) to 0.008 (purple). 146

7.17 The free energy of the Cahn-Hilliard system plotted against
time, for initial perturbation magnitudes ranging from 0.001
(red) to 0.008 (purple). 147

xii

7.18 The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for initial perturbation
magnitudes ranging from 0.001 (red) to 0.008 (purple). 148

7.19 The defect count of the Cahn-Hilliard system plotted against
time, for initial perturbation magnitudes ranging from 0.001
(red) to 0.008 (purple). Lines are slightly staggered away from
integer values to avoid overlap on the graph. 149

7.20 Plots of the concentration in a patterned phase decomposi-
tion, with an initial perturbation magnitude of 0.001, at time
t ≈ 0.0008 on the left and t ≈ 0.1 on the right. The early-stage
solution appears to fit the imposed pattern, but full decompo-
sition has not yet occurred. 149

7.21 The rate of change of the concentration (in a scaled H2 norm)
plotted against time, for domain thicknesses ranging from 0.0625
(red) to 0.25 (purple). 151

7.22 The free energy per unit volume of the Cahn-Hilliard system
plotted against time, for domain thicknesses ranging from 0.0625
(red) to 0.25 (purple). 152

7.23 The horizontal and vertical (in-film directions) correlation lengths
of the Cahn-Hilliard system plotted against time, for domain
thicknesses ranging from 0.0625 (red) to 0.25 (purple). 153

7.24 The thickness (through-film) direction correlation lengths of the
Cahn-Hilliard system plotted against time, for domain thick-
nesses ranging from 0.0625 (red) to 0.25 (purple). 153

7.25 The defect count of the Cahn-Hilliard system plotted against
time, for domain thicknesses ranging from 0.0625 (red) to 0.25
(purple). Lines are slightly staggered away from integer values
to avoid overlap on the graph. 155

7.26 The rate of change of the concentration (in a scaled H2 norm)
plotted against time, for domain sizes ranging from 1× 1 (red)
to 4 × 4 (blue). 157

7.27 The free energy per unit area of the Cahn-Hilliard system plot-
ted against time, for domain sizes ranging from 1 × 1 (red) to
4 × 4 (blue). 157

7.28 The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for domain sizes ranging
from 1 × 1 (red) to 4 × 4 (blue). 158

7.29 The defect count per unit length of the Cahn-Hilliard system
plotted against time, for domain sizes ranging from 1× 1 (red)
to 4 × 4 (blue). 159

7.30 The rate of change of the concentration (in H2 norm) plotted
against time, for gradient coefficients ranging from 0.01 (red) to
0.04 (purple). 161

xiii

7.31 The free energy of the Cahn-Hilliard system plotted against
time, for gradient coefficients ranging from 0.01 (red) to 0.04
(purple). 161

7.32 The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for gradient coefficients
ranging from 0.01 (red) to 0.04 (purple). 162

7.33 The defect count of the Cahn-Hilliard system plotted against
time, for gradient coefficients ranging from 0.01 (red) to 0.04
(purple). Lines are slightly staggered away from integer values
to avoid overlap on the graph. 162

7.34 The development of an instability in a patterned spinodal de-
composition problem with ǫc = 0.04. 164

7.35 The rate of change of the concentration (in H2 norm) plotted
against time, for average concentrations ranging from 0.25 (red)
to 0.5 (purple). 164

7.36 The free energy of the Cahn-Hilliard system plotted against
time, for gradient coefficients ranging from 0.25 (red) to 0.5
(purple). 165

7.37 The rate of change of the concentration (in H2 norm) plotted
against time, for pattern bias amplitudes ranging from 0 (red)
to 0.08 (purple). 167

7.38 The free energy of the Cahn-Hilliard system plotted against
time, for pattern bias amplitudes ranging from 0 (red) to 0.08
(purple). 167

7.39 The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for pattern bias amplitudes
ranging from 0 (red) to 0.08 (purple). 169

7.40 The defect count of the Cahn-Hilliard system plotted against
time, for pattern bias amplitudes ranging from 0 (red) to 0.08
(purple). Lines are slightly staggered away from integer values
to avoid overlap on the graph. 170

7.41 The chemical free energy density of the Cahn-Hilliard system
plotted against local concentration, for various temperatures. . 171

7.42 The free energy of the Cahn-Hilliard system plotted against
time, for NkT ranging from 0.5 (red) to 0.9 (purple). 172

7.43 The rate of change of the concentration (in H2 norm) plotted
against time, for NkT ranging from 0.5 (red) to 0.9 (purple). . 173

7.44 The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for NkT ranging from 0.5
(red) to 0.9 (purple). 174

xiv

7.45 The defect count of the Cahn-Hilliard system plotted against
time, for NkT ranging from 0.5 (red) to 0.9 (purple). Lines are
slightly staggered away from integer values to avoid overlap on
the graph. 174

7.46 The time-step lengths at each point in simulation time for a
single run of a patterned spinodal decomposition problem. . . 178

7.47 The minimum, mean, and maximum time-step length at each
point in simulation time, for many Monte Carlo samples and
parameter values in a pattern bias amplitude study. 179

7.48 The number of inexact Newton steps taken at each point in
simulation time for a single run of a patterned spinodal decom-
position problem. 180

7.49 The minimum, mean, and maximum number of inexact Newton
solver steps taken at time steps covering each point in simulation
time, for many Monte Carlo samples and parameter values in a
pattern bias amplitude study. 181

7.50 The number of Krylov steps taken at each point in simulation
time for a single run of a patterned spinodal decomposition
problem. 182

7.51 The minimum, mean, and maximum number of total Krylov
solver steps taken during time steps covering each point in sim-
ulation time, for many Monte Carlo samples and parameter
values in a pattern bias amplitude study. 183

7.52 The solver efficiency (expressed as a ratio of simulation time
elapsing to clock time elapsing) at each point in simulation time
for a single run of a patterned spinodal decomposition problem. 185

7.53 The minimum, mean, and maximum solver efficiency (expressed
as a ratio of simulation time elapsing to clock time elapsing)
during time steps covering each point in simulation time, for
many Monte Carlo samples and parameter values in a pattern
bias amplitude study. 186

xv

Chapter 1

Introduction

1.1 Research Motivation

Mathematical modeling and simulation of scientific and engineering ap-

plications has been been dramatically advancing in recent decades. Much of

this advance has been driven by the evolution of miniaturization technology.

The successes of microelectronics development has provided new opportuni-

ties to utilize an exponential growth in computational power for solving more

complex problems. The limitations of computer technology have lead to new

challenges in software design to enable the use of the power of modern parallel

computers in complex codes for large-scale applications. The needs of mini-

turization technology themselves have led to new challenges in microscale and

multiscale application problems. New application areas such as microfluidics

and nanoscience are emerging, and in every application area new multiphysics

and multiscale problems are continuously coming into the scope of numerical

analysis capabilities. The research herein is a multidisciplinary investigation

into the mathematical modeling of nonlinear fourth-order problems arising in

flow and transport applications, ranging from non-Newtonian fluid flow and

surfactant-driven thin film transport processes to phase separation processes

and pattern self-assembly. To enable these studies this research includes new

methodology, algorithms, and software contributions which also have applica-

1

bility in the wider numerical analysis field.

Finite Element Methods are a time-tested way to efficiently simulate a

wide range of continuum physical processes [31, 42, 72, 107]. They build on a

solid theoretical foundation for providing accurate approximations to Bound-

ary Value Problem and Initial-Boundary Value Problem solutions. Finite el-

ement meshes can be constructed to approximate domains of very general

complex geometry, and can be locally refined to resolve particular solution

features while adding minimal additional computational expense. The low-

order C0 Lagrange finite elements in common use are well-suited to many

physical problems where a second-order partial differential equation is to be

solved, and most of the finite element literature focuses on the application of

the technology to second-order problems.

For the fourth-order problems of interest here, however, the numeri-

cal analysis literature is more restricted, often to less efficient formulations

and invariably to less flexible methods. For instance, spectral methods and

structured finite difference methods remain popular even for problems whose

solutions exhibit thin features that would naturally be more efficiently resolved

by an adaptive, unstructured discretization [7,9,29,62]. Problems to be solved

by such methods are often limited to simple geometries and cartesian grids.

There is a long history of successful application of finite element meth-

ods to fourth-order equations arising in plate bending models. These ideas

have been extended to the streamfunction formulation of divergence-free vis-

cous flow and other selected nonlinear problems. Of particular interest are

the families of composite macroelements which can be used to cover irregu-

2

lar domain geometry with C1 bases with suitable convergence properties for

evaluating variational formulations on H2 and similar function spaces. The

current popularity of such methods may be limited, not by the versatility and

performance with which they can be used to solve general problems, but by the

complexity of the infrastructure which must be developed to enable a parallel

adaptive finite element code to use these more complicated elements. Accord-

ingly, in this research work we develop new methods for enabling the use of

general classes of C1 elements in a modern code. Extensions for treating hang-

ing node constraints, projections, error indicators, and other requirements of

adaptivity are discussed, as are algorithms for the efficient use of such general

classes of elements on parallel unstructured meshes. The resulting code, along

with contributions from other researchers, is made available under an open

source license to the wider science and engineering community. By creating

such infrastructure in a modular, object-oriented design, we meet the goal of

creating tools that are extensible and flexible enough for use in a wide variety

of applications as demonstrated in this work.

More specifically, this fourth-order finite element infrastructure is uti-

lized here, in a series of physical problems of increasing complexity, from the

simple biharmonic problem, up through incompressible flow problems in non-

Newtonian shear-thinning fluids, and finally to surfactant-driven flow and to

phase decomposition in thin films. The latter two problem classes involve, re-

spectively, evolution of curved surfaces driven by surface tension modulated by

temperature and surfactant gradients, and evolution of concentration phases in

separating mixtures as described by phase field equations [5,57] with non-local

energy terms in the underlying thermodynamics.

3

This final physical model, the Cahn-Hilliard diffuse-interface treatment

of phase separation with an interfacial free energy term, is of current interest

in material science processes from the microscale to the nanoscale [121,144], in

solids and fluids [91,126], and for applications ranging from manufacturing [19,

79, 113, 119] to biology [84, 140], which are often naturally best described by

such phase field equations. Even for materials naturally separated by sharp

interfaces, diffuse interface methods using an artificially diffuse interface have

been found to be a valuable way to simulate moving front problems [18,21,40,

97,132,138]. Diffuse interface models are of natural interest in any application

where the moving interfaces undergo topological change, since with phase field

methods such changes are naturally modeled by the equations and require no

front-tracking special cases to simulate.

Problems with diffuse interfaces involve interesting physical phenom-

ena at disparate space and time scales, making them a promising target for

the adaptivity techniques in this work. In the studies here we first simulate

generic Cahn-Hilliard processes of general interest, then phase decomposition

processes with pattern self-assembly. The process of phase decomposition

and the associated spinodal decomposition problem adds an additional layer

of complexity to the problem, which now depends on both the deterministic

Cahn-Hilliard evolution problem and on the aleatory uncertainty in the initial

perturbation from a single-phase mixture.

4

1.2 Chapter Overview

Using a new macroelement infrastructure described in Chapter 2, we

show how to automatically construct C1 finite element spaces from low degree

polynomials on arbitrary meshes. We experiment with Powell-Sabin-Heindl

and Clough-Tocher elements, examining convergence rates and compatibility

with adaptively refined meshes. The hanging node constraint matrix construc-

tion in Chapter 3 enables the easy extension of most C1 finite element spaces

to locally refined, non-conforming meshes, and the a posteriori error indicator

derived in that chapter allows us to construct meshes which are adaptively

refined into solution features of fourth-order boundary value problems. These

results demonstrate a significant efficiency improvement from adaptive solu-

tions to such problems, including improved convergence rates on problems with

strong singularities. Reliable heuristics have also been developed for employing

adaptive element refinement on transient problems, alone or in combination

with adaptive time discretization.

As part of this dissertation, these techniques have now been incorpo-

rated into an object-oriented software library for performing parallel adaptive

solutions to finite element formulations. Some of the design concepts, parallel

data structures and algorithms, and solver operation in this work are described

in Chapter 4. The general utility of the design decisions here explains their

effectiveness at solving the diverse class of physics applications which follows.

Chapter 5 demonstrates the value of C1 elements in incompressible

fluid flow problems using Newtonian and shear-thinning viscosity models. By

using the streamfunction formulation and solving the associated fourth-order

5

problem here, strongly rather than weakly divergence-free solutions are ob-

tained, and solvers deal with positive definite and positive semidefinite sys-

tems rather than the saddle point problems associated with more traditional

mixed velocity-pressure methods.

Thin film flow and transport problems are becoming increasingly impor-

tant in microelectronic, micromechanical, and microfluidic design. In Chap-

ter 6 and Chapter 7, we examine two classes of physics which are of importance

in such industrial thin fluid layer problems. In Chapter 7 we develop an appro-

priate formulation and simulate the instabilities arising in phase decomposition

of fluid mixtures, using the Cahn-Hilliard diffuse interface model. The fourth-

order interfacial energy term in the Cahn-Hilliard equation is a natural candi-

date for conforming approximation on C1 elements, and the narrow interfaces

between material phases prove to be ideal targets for local mesh refinement.

We finally apply these techniques and algorithms to the problem of patterned

phase separation, exploring the physical parameter space while using Monte

Carlo sampling to take into account the random initial perturbations inherent

in the phase decomposition problem.

1.3 Contributions

The primary original contributions of this work are:

1. The extension of C1 conforming macroelement types to non-conforming

finite element grids, via techniques that apply to other general element

classes as well.

6

Figure 1.1: Left: A pattern with defects from the experimental literature,
showing phase separated deuterated polystyrene and polybutadine on a mono-
layer substrate [79]. Right: A Cahn-Hilliard simulation from the present study
with a weak spatially-dependent surface affinity term, showing similar quali-
tative behavior.

2. Derivation of an upper bound error indicator for the biharmonic problem

with special consideration for composite macroelements, and results us-

ing simplified derived versions of this indicator on that and other fourth-

order boundary value problems.

3. Algorithms for automatic adaptive refinement and coarsening on tran-

sient problems.

4. Implementation of these and other data structures and algorithms in a

modern, open source library code which is in public use.

5. Adaptive streamfunction solutions to divergence-free flow problems with

non-Newtonian fluids in benchmark problems exhibiting strong singular-

ities.

7

6. Demonstration of a new fully coupled, non-mixed weak formulation for

depth-averaged thermally driven thin film flow and surfactant transport.

7. Studies of Cahn-Hilliard phase decomposition in 2D and 3D, including

parametric and Monte Carlo studies of pattern self-assembly with an

added configurational free energy bias.

Parts of this work have been published in Engineering With Comput-

ers [86] and the International Journal for Numerical Methods in Engineer-

ing [116, 118]. Further papers are in preparation [115,117].

Other new contributions in this work include:

1. A new benchmark problem based on incompressible viscous flow, with

an analytic solution and no manufactured forcing function, for testing

adaptive refinement strategies for fourth-order problems.

2. Algorithms and distributed-memory data structures for enabling the ef-

ficient use of parallel unstructured adaptive finite element grids on mas-

sively parallel clusters.

3. Strategies for the reliable application of transient and nonlinear solver

techniques to a variety of discretized Initial-Boundary Value Problems.

4. Development and implementation of object-oriented software design prin-

ciples for abstraction and modularization of transient multiphysics bound-

ary value problem codes.

5. Proposed formulations for finite element Cahn-Hilliard discretizations

with provably non-increasing total free energy

8

6. Identification of physical parameters which strongly impact the reliability

of pattern formation in thin film phase decomposition.

9

Chapter 2

Automatic Macroelement Generation and Use

2.1 Introduction

We consider macroelement classes designed to support C1 continuous

finite element bases with few degrees of freedom, and thus to efficiently solve

fourth-order problems on fine meshes. Such C1 bases are of interest in plate

bending, in the streamfunction formulation of 2D incompressible viscous flow,

in thin film problems, and in the construction of divergence-free bases for more

general incompressible flow problems [30, 61].

We begin with the fourth-order case, and with the familiar biharmonic

equation as the model problem. The macroelement bases of interest here are

composed from standard polynomial bases on simplicial subelements. The

basic macroelement type is described first, and an algorithm is given for con-

structing C1 bases (easily extensible to Cr) on a piecewise polynomial mas-

ter element in R
d. Representative macroelement basis functions are graphed,

and interpolation and approximation error convergence rates are discussed

and tested on uniformly refined grids. Next, the use of C1 macroelements

is extended to hierarchical adaptive mesh refinement (AMR). The problem

of compatibility between macroelement subdivision and adaptive refinement

subdivision is investigated and a simple algorithm for generating degree-of-

freedom constraints at “hanging nodes” of refined elements is developed. In

10

later chapters, a general a posteriori error estimator for the biharmonic prob-

lem is derived, and a simplified error indicator is tested numerically on a simple

model problem and on wide classes of application problems.

This error estimator is applicable to any C1 element with adequate

interpolation accuracy for functions in Hilbert space H2(Ω) on a bounded

domain Ω. The element basis construction procedures are applicable to any

elements whose macroelement splittings are preserved under affine transfor-

mation, and the procedures are most conveniently and efficiently applied to

elements whose local function spaces are preserved under affine transformation.

A macroelement splitting may be termed “affine-transformable” if for

any two such elements K and K ′ related by an affine transformation K ′ =

T (K), every subelement S ⊂ K corresponds to a subelement T (S) ⊂ K ′. We

call a finite element function space affine-transformable if any basis function

φK
′

i on one element can be expressed as a weighted sum of transformed basis

functions from the other element, φK
′

i =
∑

cijT (φKj).

The fully affine-transformable C1 elements include the quadratic Powell-

Sabin-Heindl 12-split triangle [103], the cubic Hsieh-Clough-Tocher 3-split tri-

angle [43], the quartic Clough-Tocher-Percell 3-split triangle [100], the quintic

Argyris triangle, and the quintic Alfeld-Awanou-Lai 4-split tetrahedron [6]. C1

elements with affine-transformable splittings but without affine-transformable

function spaces include the quadratic reduced Clough-Tocher triangle [42]

and the cubic reduced Alfeld tetrahedron [3], and C1 elements with mesh-

dependent (and thus in general not affine-transformable) splittings include

the quadratic Powell-Sabin 6-split triangle, the Lai quadrilateral [90], the

11

Worsey-Farin 12-split tetrahedron [141], and the Worsey-Piper 24-split tetra-

hedron [142].

Our subsequent numerical experiments specifically use the cubic Clough-

Tocher and the Powell-Sabin triangles, which are described in detail below.

2.2 Macroelements

Enforcing C1 continuity between finite elements requires additional de-

grees of freedom corresponding to normal derivatives on element boundaries.

For high-degree polynomial elements, these can replace internal degrees of free-

dom, but low-degree elements on arbitrary meshes do not have enough internal

degrees to permit this. For example, the Bogner-Fox-Schmidt rectangle can in

general only maintain C1 continuity on C1 mappings of rectilinear grids [101],

and elements utilizing polynomials on regular simplicial grids can only main-

tain full interpolation accuracy for k ≥ 5 (e.g. the Argyris triangle) in 2D or

for k ≥ 9 in 3D [77,130].

A C1 continuous function space on an arbitrary unstructured grid with

low-degree polynomials may be constructed by using macroelements composed

of subelements. By making the basis functions piecewise polynomial on these

subelements rather than polynomial on the macroelement, one can add more

degrees of freedom internal to the macroelement. Some of these additional

degrees of freedom are then constrained to satisfy intra-element continuity

restrictions, and the remainder allow us to create enough vertex and side

degrees of freedom to exactly represent both function values and gradients

across element boundaries. Our current results use the Hsieh-Clough-Tocher

12

Figure 2.1: A Hsieh-Clough-Tocher 3-split, a Powell-Sabin-Heindl 12-split,
and two adjacent Powell-Sabin 6-split triangles, with value degrees of freedom
labeled by circles and derivative degrees of freedom labeled by arrows. Note
the mesh-dependent splitting required for the 6-split triangle type.

(HCT) 3-split, the Powell-Sabin-Heindl (PSH) 12-split, and the PSH 6-split

triangles, whose subelement splittings and degrees of freedom are shown in

Figure 2.1.

Each subtriangle in the Powell-Sabin-Heindl (PSH) 6-split triangle has

one vertex at a macroelement vertex, one vertex along a macroelement edge

(directly between the interior vertices of the two neighboring macroelements),

and one vertex in the macroelement interior (usually at the macroelement cen-

troid). Basis functions on this PSH element are quadratic on each subtriangle,

and nine degrees of freedom (corresponding to function values and x and y

derivatives at each vertex) uniquely define basis functions which include all

quadratics but which now have first derivatives continuous with neighboring

elements.

Because satisfying continuity with the PSH 6-split triangle requires a

subelement splitting which varies depending on the geometry of neighboring

subelements, finite element codes using the PSH 12-split triangle are more

13

convenient. The 12-split triangle no longer restricts the location of the edge

vertex (which is usually placed at an edge midpoint), but it instead adds

internal edges between each pair of midpoints, as well as three new degrees

of freedom corresponding to function normal derivatives at these midpoints.

The 12-split triangle edge is then able to represent any piecewise-quadratic

function and piecewise-linear normal derivative.

The same 12 degrees of freedom can alternatively be used to define

a unique piecewise cubic function on the HCT 3-split triangle. The fixed

values and tangential derivatives at each node define a unique cubic function

along each edge, and the fixed normal derivatives at each node and midpoint

define a unique quadratic normal derivative. Hence, the 3-split triangle gives

a C1-continuous, piecewise cubic function matching any cubic edge data with

quadratic edge derivatives.

2.3 Master Basis Function Derivation

The construction of early macroelements such as the HCT triangle was

done manually, requiring clever proofs to show unisolvence and tedious alge-

braic manipulations to find basis function coefficients. Modern linear algebra

software can circumvent this difficulty, making it possible to derive and prove

the unisolvency of more complicated macroelement basis functions algorithmi-

cally [85].

The HCT and PSH macroelements considered here are constructed

from subtriangles with between 30 and 72 total unconstrained degrees of free-

dom. In general, enforcement of continuity restrictions between neighboring

14

subelements involves the application of many constraint equations with sub-

tle linear interdependencies. Constructing quadrilateral, three dimensional, or

higher degree macroelements further increases the problem complexity. For el-

ements such as the HCT and PSH 12-split triangles whose splittings are always

preserved by affine transformations, the basis functions on a fixed “master”

element can be obtained automatically with any linear algebra package.

Given a subelement splitting and local degree-of-freedom functionals σ̂j

for a C1 macroelement in R
d, the steps for constructing the master basis are:

1. Choose and index a convenient (e.g. monomial) set of explicitly defined

basis functions φj(~ξ) which are each supported and continuous on exactly

one subelement of the master element K̂. The goal is to find basis

functions θi(~ξ) ≡
∑

j rijφj(
~ξ) which are C1 continuous across K̂ and

which uniquely solve the degree-of-freedom equations σ̂j(θi) = δij .

2. On each internal side of the subelements of K̂, identify the regularly

distributed Lagrange interpolation points ~ξn. For functions of polynomal

degree p on a simplicial side, there will be (p+d−1)!
p!(d−1)!

such points.

3. At each point ~ξn, express one function equality constraint and d gra-

dient component equality constraints, each in the form
∑

j Ckjrij = 0,

assigning each constraint a unique number k. For equality constraints,

these coefficients are of the form Ckj = sφj(~ξnk
), where s is arbitrarily

chosen to equal 1 for degrees of freedom j supported on one subele-

ment sharing the side and −1 for degrees of freedom supported on the

other subelement. For gradient constraints, the coefficients take the form

Cik = s
∂φj

∂ξl
(~ξnk

).

15

4. Put this constraint matrix C in row-reduced form. Truncate any all-zero

rows (and any nearly-zero rows if using floating point arithmetic).

5. Append boundary degree-of-freedom functionals σ̂k as additional rows,

which will take the form Cik = σ̂k(φi). For functionals which are eval-

uated on points shared by the boundary of multiple subelements, all

basis functions except those on a single (arbitrary) subelement should

be evaluated (and have their derivatives evaluated) as zero at such points.

Verify the linear independence of each new row, e.g. by testing the rank

of C.

6. For the macroelements discussed in this article, C will now be a square

matrix. For more general macroelements, if C is not square at this step

then make it so by adding interior degree-of-freedom functions, again

checking each for linear independence.

7. Invert C, and multiply by unit vector êi to get the basis coefficients rij

corresponding to the degree of freedom on row i.

This calculation guarantees the construction of basis functions θi(~ξ) ≡
∑

j rijφj(
~ξ) which are C1 continuous within the master macroelement and

which are a unique solution to the degree-of-freedom equations σ̂j(θi) = δij .

If the degrees of freedom on the element boundary are sufficient to uniquely

define any admissible function values and normal derivatives on an element

boundary, then the resulting element will form a C1 continuous function on

an arbitrary mesh.

16

2.4 Global Degree of Freedom Calculation

Because global degrees of freedom σj on a C1 continuous finite element

space depend on first derivative components as well as function values, they

can not be created by composing a master element “shape” function θi with

the inverse of the map T : K̂ → K between the master and physical element.

Composing master element shape functions with the inverted mapping func-

tion does give functions θi ◦ T−1 spanning the global function space restricted

to the element, but none necessarily correspond directly to any global degree

of freedom.

As a simple example, consider how nodal gradient degrees of freedom

on a two dimensional element are affected by a non-identity map T at the

node. In the global function space, a natural choice of degrees of freedom are

the x and y derivatives, the gradient in the direction of vectors ~ex and ~ey.

The local degrees of freedom, however, correspond to multiples of the gradient

in the direction of T~eξ and T~eη, which in general will not correspond to the

global vectors as illustrated in Figure 2.2.

Figure 2.2: Derivatives in cartesian directions on the master element may
correspond to derivatives in skewed directions on a physical element.

The shape function Θi which does correspond to each global degree of

freedom will be a linear combination of multiple transformed master shape

17

functions, Θi ≡
∑

j Aijθj ◦ T−1. Again, the coefficients of this transformation

can be obtained algebraically. Evaluating all transformed local functions at all

degrees of freedom, σi(Θk) =
∑

iAkjσi(T
−1(θj)) = δjk, gives a small matrix

Sji ≡ σi(T
−1(θj)) whose inverse can be used to find the coefficients: AS =

I ⇒ A = S−1.

Both S and S−1 are sparse. For both the HCT and PSH 12-split cases,

only 33 of 144 matrix entries are non-zero. Because this calculation must

be repeated on each physical element, efficient calculations should take this

sparsity structure into account. Although the present results only use meshes

of affine-transformed elements, the only requirement for the above construction

algorithm is that T is invertible.

2.5 A Priori Error Estimates

Interpolation Error PSH and HCT elements possess stable local bases

which can interpolate quadratic and cubic functions (polynomial degree k ≡

2, 3) respectively. Thus, on a polygonal domain Ω with Lipschitz boundary, a

regular family of meshes with maximum element diameter h can interpolate

any sufficiently smooth function w with an accuracy restricted by k and by the

smoothness of w in spaces of order up to n ≤ k + 1. That is, the interpolant

Ih(f) ≡
N
∑

i=1

σi(f)φi (2.5.1)

satisfies

||w − Ihw||Hm(Ω) ≤ Chµ |w|Hn(Ω) (2.5.2)

for µ ≡ min (k + 1 −m,n−m).

18

Galerkin Approximation Error Consider the model fourth-order problem

∆2u = f , where ∆2 denotes the biharmonic operator. On the domain Ω,

the weak form of the biharmonic operator is B(u, v) ≡ (∆u,∆v)Ω, where

∆ denotes the Laplacian operator and (·, ·)Ω is the standard inner product on

Lebesgue space L2(Ω). If the weak problem is restricted by essential boundary

conditions to a subset H0 ⊂ H2(Ω) on which B is coercive, then B will satisfy

an inf-sup condition on both H0 and the H0 conforming function subspaces

Hh
0 . Galerkin orthogonality (the Céa lemma) then gives the expected (linear

for PSH, quadratic for HCT) rate of convergence in the H2 norm, for problems

with sufficiently smooth solutions (contained in Hn(Ω), with n > m). See

e.g. [32]. More specifically, let

α ≡ inf
v∈H0

sup
w∈H0

B(v, w)

||v||Hm(Ω) ||w||Hm(Ω)

(2.5.3)

and let M be the bound on B for all admissible v and w satisfying

|B(v, w)| ≤M ||v||Hm(Ω) ||w||Hm(Ω) (2.5.4)

Then

||u− uh||Hm(Ω) ≤ M

α
||u− Ihu||Hm(Ω) (2.5.5)

≤ M

α
Chµ |u|Hn(Ω) (2.5.6)

As anticipated, the HCT elements yield an additional power of h in

the H2 convergence rate with no more degrees of freedom than the 12-split

PSH. Less obvious is that the difference increases in the L2 (i.e. H0) norm.

Application of the Aubin-Nitsche method gives anHr error estimate for r < m.

19

Define ν ≡ min (k + 1 −m,m− r), the interpolation error convergence rate

in Hm for the solution to an adjoint problem with data in H−r. Also define µ

as before, the approximation error convergence rate for a solution u ∈ Hn to

the forward problem. Then, as proven in Sec. 3.3 of [32], if uh is the Galerkin

approximation to a bilinear elliptic problem on Hm(Ω), its error is of order

η ≡ ν + µ = min (2(k + 1 −m), k + 1 − r, n− r):

||u− uh||Hr(Ω) ≤ Chη ||u||Hn(Ω) (2.5.7)

For k = 3, or for k = 2 and r ≥ 1, this is the usual result: measuring

error in a lower order norm adds a power of h to the convergence rate. Note,

however, that in the case of m = 2 (fourth-order problems), k = 2 (quadratic

elements) and r = 0 (the L2 norm), the η ≤ 2(k + 1 − m) term dominates,

and the error bound is only quadratic, not cubic. Numerical tests confirm the

suboptimal behavior in this norm.

This result appears to make PSH elements an inferior choice for plate-

bending problems, depth-averaged thin layer problems, or any other applica-

tions where the scalar solution to a fourth-order equation is of direct interest.

However, the lower L2 convergence rate merely implies poor streamfunction

error in streamfunction and divergence-free flow formulations. Velocities in

these problems are usually of more direct concern, and velocity L2 error is

only limited by streamfunction H1 error; in theH1 norm PSH elements achieve

the full O (h2) convergence, so optimal results are achieved here for velocity

approximations.

As a demonstration that these error bounds are strict, we compute the

Galerkin approximation to u ≡ (x−x2)2(y−y2)2 on the unit square by solving

20

the biharmonic problem ∆2u = f , with a manufactured forcing function f

corresponding to this u. As indicated by the slopes of the log-log error plots in

Figure 2.3, both 6-split and 12-split elements show quadratic error convergence

(with nearly the same constant, in fact) in L2 and H1 norms, whereas the 3-

split element error convergence is asymptotically cubic in H1 and quartic in

L2.

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Degrees of Freedom

E
rr

or
 F

ra
ct

io
n

Error Convergence, Manufactured Benchmark

Powell−Sabin 6−split L
2
 error

Powell−Sabin 6−split H1 error
Powell−Sabin 12−split L

2
 error

Powell−Sabin 12−split H1 error
Clough−Tocher 3−split L

2
 error

Clough−Tocher 3−split H1 error

Figure 2.3: Galerkin approximation error in L2 and H1 norms, scaled by
the solution norm and evaluated on uniform meshes for the manufactured
benchmark biharmonic problem.

The direct Galerkin solution of fourth-order problems can compare fa-

vorably in degree-of-freedom cost to popular alternatives, due to the consol-

idation of degrees of freedom that continuity enforcement entails. An HCT

mesh provides cubic representations with up to six degrees of freedom per

node, for example, whereas the classical mixed method [95] with paired cubic

finite elements would require up to eighteen, and a continuous/discontinuous

Galerkin method [58] on C0 cubic finite elements would require up to nine.

21

2.6 Adaptive Refinement on Macroelements

In each of the preceding error bounds, the convergence rates are only

optimal for sufficiently smooth solutions, and are reduced for problems with

singularities. Even in smooth problems with sharp layers it may be inefficient

or impractical to reach the asymptotic regime with a uniformly refined mesh.

To produce an accurate approximation with fewer degrees of freedom, we seek

to adapt the mesh to the particular problem being solved, grading the mesh

locally into solution features where higher resolution is needed.

From a coarse initial mesh, we can obtain an isotropically adaptively

refined mesh by repeatedly subdividing elements with the greatest contribution

to approximation error. In all but one-dimensional problems, this produces a

non-conforming mesh, with “hanging nodes” on the sides of coarse elements

with more refined neighbors. To produce a C1 conforming solution on such a

“non-conforming” mesh, the degrees of freedom of these refined elements must

be constrained in terms of the degrees of freedom of their coarser neighbors.

AMR schemes with hanging node constraints are commonly used with

Lagrangian finite elements, but more exotic element types add the complica-

tion that nodes can share physical location without sharing degrees of freedom.

For example, at a hanging node in a HCT or PSH 12-split mesh, the midedge

normal derivative degree of freedom on the coarse element will be equal to

a linear combination of the nodal gradient component degrees of freedom on

the refined neighbor elements, but in general the normal derivative will not be

equal to either component alone.

If hanging node refinement is to reduce approximation error, these con-

22

Figure 2.4: A typical hanging node between Hsieh-Clough-Tocher or Powell-
Sabin-Heindl 12-split triangles. The coarse triangle nodal degrees of freedom
(purple) match those of the refined neighbors, but the refined hanging node
degrees of freedom (red) do not match the coarse normal derivative degree
of freedom (blue) at the node, and the refined normal derivative degrees of
freedom have no corresponding coarse degrees of freedom at all.

tinuity constraints must constrain the degrees of freedom on the fine elements

at a hanging node, never the coarse element. When using macroelements, this

can limit an AMR scheme. Figure 2.5 illustrates this point with the 12-split

PSH element. With these elements, approximations are piecewise quadratic

on each edge and have a potentially discontinuous tangential second derivative

at the subelement node on the macroelement edge. If this subelement node

is not made to correspond with a subelement node or hanging node of the

neighboring refined elements, then the edge value would be forced to be the

same quadratic across the subelement node, the coarse element degrees of free-

dom would no longer be independent, and the locality of those basis functions

would be destroyed. For the 12-split elements, both uniform subelement divi-

sion and isotropic refinement use edge midpoints, and so a hanging node mesh

is natural. For the 6-split elements, isotropic refinement requires first moving

the subelement node on the coarse macroelement to the macroelement edge

midpoint, then moving the subelement nodes on the refined elements to make

23

Figure 2.5: An isotropic adaptive refinement of a Powell-Sabin-Heindl 12-split
triangle. The subelement node at the edge midpoint of the coarse triangle
must also be a node of the neighboring refined triangles.

those subelements sides quadratic with linear gradients rather than piecewise

quadratic with piecewise linear gradients.

The choice of macroelement splitting can make adaptive refinement

schemes much easier or harder. With HCT elements, each edge borders a single

subelement, and any AMR scheme will be compatible with this splitting. The

Worsey-Farin and Worsey-Piper tetrahedra, on the other hand, each require a

face splitting which is not compatible with isotropic quadrisection of a triangle,

and which is therefore only well-suited to conforming meshes.

The question of p refinement on macroelement meshes raises similar

concerns about function space compatibility. Macroelements which require

splitting of element sides, such as the PSH triangles and the Worsey-Farin and

Worsey-Piper tetrahedra, may not be compatible with elements with unsplit

element sides, such as the HCT triangles and the quintic Alfeld-Awanou-Lai

4-split tetrahedron. On the other hand, macroelements with unsplit sides can

be made compatible with higher degree elements all the way up to unsplit C1

finite elements. It may be possible to make C1 triangles suitable for adaptive p

refinement from quadratic to quintic and above, for example, by finding com-

24

patible bases for the function spaces defined by the restricted HCT triangle,

HCT triangle, Clough-Tocher-Percell triangle, and Argyris triangle.

25

Chapter 3

Adaptive Mesh Refinement/Coarsening for

Fourth-order Problems

C1 finite elements, and macroelements in particular, raise new difficul-

ties when used in conjunction with adaptive mesh refinement. Of particular

interest is the treatment of hanging nodes on hierarchically refined meshes.

In this chapter we discuss methods for building and working with conforming

function spaces on such non-conforming meshes.

The important developments which make this possible are:

1. The ability to construct conforming function spaces on non-conforming

adaptively refined meshes, as explained in Section 3.1.

2. A projection operator to accurately and efficiently transfer the solution

from each time step or adaptive step onto the new mesh for the next

step, such as in Section 3.2.

3. An error indicator which can reliably guide mesh refinement for fourth-

order problems, as in Section 3.3

4. An algorithm to use the information provided by those error estimates

to generate the new mesh at each time step or adaptive step, such as

in Section 3.4 for steady problems and Section 3.5 for time-dependent

problems.

26

In Section 3.6, we test some of these techniques, using a fourth-order

boundary value problem designed to produce an analytically known solution

with a point singularity.

3.1 Adaptive Meshes and Continuity

For convenience of notation, let us call the more refined and less refined

macroelements sharing a hanging node “fine” and “coarse” respectively. Once

it has been ensured that the coarse element function space restricted to a side

is contained in the function space on the fine elements sharing the side, it

is necessary to constrain the fine element degrees of freedom to enforce C1

continuity across the side. Degrees of freedom uFi on a side of the fine element

KF with solution uF must be expressed in terms of degrees of freedom uCi on

the overlapping side of the coarse element KC . The goal is to enforce that on

this side γ ≡ K̄F ∩ K̄C all derivatives Dαu up to the required continuity are

equal. That is, ∀ ~x ∈ γ, ∀ |α| ≤ r,

DαuF (~x) = DαuC(~x) (3.1.1)

Expanding in their respective bases,

Dα
∑

i

uFi φ
F
i (~x) = Dα

∑

j

uCj φ
C
j (~x) (3.1.2)

Because these spaces have finite dimension, the constraint equations

can be solved numerically. For codes which have direct access to the finite

element degree-of-freedom equations, the most efficient solution is to directly

use the fine element degrees of freedom on γ:

σFk (uF) = σFk (uC) (3.1.3)

27

Expanding in their respective bases and using the linearity of degree-

of-freedom functionals:

∑

i

uFi σ
F
k (φFi) =

∑

j

uCj σ
F
k (φCj) (3.1.4)

If the degree-of-freedom equations are used, then the desired degree of

continuity will be obtained automatically; otherwise the number of continu-

ous derivatives r must be taken into consideration to produce a non-singular

system with a Cr continuous solution. This may be done using a suitable set

of collocation points ~xk ∈ γ:

∑

|α|≤r
DαuF (~xk) =

∑

|α|≤r
DαuC(~xk) (3.1.5)

Expanding and using the linearity of derivatives:

∑

i

uFi
∑

|α|≤r
DαφFi (~xk) =

∑

j

uCj
∑

|α|≤r
DαφCj (~xk) (3.1.6)

As a final alternative, constraint matrices can be constructed from L2

projections on γ:

∑

|α|≤r
(DαuF , DαφFk)γ =

∑

|α|≤r
(DαuC, DαφFk)γ (3.1.7)

Expanding and using the linearity of derivatives:

∑

i

uFi
∑

|α|≤r
(DαφFi , D

αφFk)γ =
∑

j

uCj
∑

|α|≤r
(DαφCj , D

αφFk)γ (3.1.8)

Each of these alternatives gives a linear system with different coeffi-

cients but the same general form:

Akiu
F
i = Bkju

C
j (3.1.9)

28

If the degree-of-freedom equations are used, A will be an identity matrix

and B will be the desired constraint matrix. In any case, the unique constraint

matrix will be obtained by solving: (3.1.9):

uFi = A−1
ki Bkju

C
j (3.1.10)

to calculate a constraint matrix, which can be used to pre- and post-multiply

element stiffness matrices as in [27].

These methods can be extended to adaptive p refinement, where two or

more elements sharing a face may need to be constrained on that face to the

lowest polynomial degree among them. Although in this case the definition of

“refined” and “coarse” elements must now include higher and lower polynomial

degree, the techniques required should be little different.

Currently, the constraint calculations in our finite element software li-

brary libMesh are implemented with the degree-of-freedom functionals for

Lagrange elements, and with L2 projections for all other elements including

the C1 elements used in this research. Constraints for h refinement are calcu-

lated between a “child” element and its own “parent” to minimize inter-node

communication in parallel problems. This process can be done recursively on

meshes where elements are allowed to have neighbors which are more than one

level more refined. Constraint equations for p refinement are only supported

by libMesh for hierarchic finite element bases; the resulting constraint equa-

tions are all of the form uFi = 0 and their construction is relatively easy to

implement in software.

29

3.2 Projection Operators

For small steady-state problems, no projection operator is necessary.

Forcing functions, material property fields, and the like can be incorporated

into finite element solutions via approximate numerical integration, without

first projecting those functions into a finite element function space.

For large steady-state problems and time-dependent problems, how-

ever, it can become important to be able to efficiently and accurately transfer

solution data from one mesh to another. When solving steady-state problems

on successively more refined meshes, the solution on a fine mesh can be ob-

tained more rapidly by using the solution on a previous coarser mesh as an

initial iterate, or by using the bilinear operator on a previous coarse mesh as

a multigrid preconditioner. When solving time-dependent problems via adap-

tive refinement and coarsening, the time integration scheme may require that

solutions at previous time steps be projected onto a differently-refined mesh

at the current timestep.

Implementing the projections required by adaptive mesh refinement

and coarsening, requires a projection operator well suited to hierarchical mesh

refinement methods. Such an operator should be accurate, obviously, but

other operator characteristics are equally important. The projection operator

should be computationally efficient - to be useful in multigrid schemes, in fact,

the operator should have a computational cost which scales linearly with the

number of elements in the mesh. The projection operator should be uniquely

defined and parallelizable - when using the parallel computation features in

libMesh to operate on neighboring finite elements simultaneously, for instance,

30

the projections computed should agree at the neighbors’ interface. Finally, the

projection operator should be as independent of finite element type as possible.

There is a wide variety of finite element families useful for constructing C1

function spaces, and it would be ideal to use the same algorithm for all of

them.

As with constraint matrix construction, it is possible to use Hilbert

space projections to create element-independent code. Using an L2 or H1

projection over each element interior is efficient, runs in parallel without inter-

processor communication, and gives an exact solution in the case of refinement

using nested finite element spaces. For coarsening, however, an element-wise

Hs projection would not be uniquely defined, as the projections from neigh-

boring cells could produce different function values along their shared side.

A more complicated but similarly efficient algorithm restores uniqueness by

acting on these shared degrees of freedom first, as follows:

Start by interpolating degrees of freedom on coarse element vertices.

Holding these vertex values fixed, do projections along each coarse element

edge. Because these projections involve only data from the original refined

elements on that edge and not data from element interiors, they are uniquely

defined. In 3D, next project element faces while holding vertex and edge

data fixed. Finally, project element interior degrees of freedom while hold-

ing element boundary data fixed. Although this series of projections is more

complicated than a single per-element projection, the number of degrees of

freedom to be solved for at each stage is much smaller, and so the dense local

matrix inversions required are faster.

31

3.3 A Posteriori Error Estimation

A variety of error indicators of different degrees of complexity and

computational cost can be devised for adaptive simulations. These include

interpolation-based indicators, residual indicators, flux jump indicators, patch

recovery indicators and adjoint-based dual indicators [2,28,36,59,69,146,147].

The simple flux jump indicator based on the Laplace operator has been used

successfully for a variety of second order problems, so the natural extension

here is to use an analogous indicator based on the biharmonic operator.

For elliptic second-order problems, it is common to guide AMR by

using a flux error estimator [81], integrating weighted normal derivative jumps

around the boundary of each element. In a C1 finite element space, there

are no first derivative jumps, but from the classic biharmonic PDE one can

derive analogous a posteriori error estimators. The finite element literature on

fourth-order problems includes estimators derived for mixed formulations [39],

and for special bases such as tensor products on rectilinear meshes [1]; however

the estimator below will be valid for arbitrary meshes of affine-transformable

C1 elements.

Consider the problem of finding u such that ∆2u = f on the polygonal

domain Ω, with Dirichlet (essential) boundary conditions u = h1 on ΓD1 ⊂ ∂Ω

and ∂~nu = h2 on ΓD2 ⊂ ∂Ω, and with Neumann (natural) boundary conditions

∂~n∆u = g1 on ΓN1 ≡ ∂Ω − ΓD1 amd ∆u = g2 on ΓN2 ≡ ∂Ω − ΓD2.

Choose a fixed uB ∈ H2(Ω) such that uB|ΓD1
= h1 and ∂~nuB|ΓD2

= h2.

Define a function space H0 with zero Dirichlet boundary conditions:

H0 ≡
{

v ∈ H2(Ω) : v|ΓD1
= 0, ∂~nv|ΓD2

= 0
}

(3.3.1)

32

Then, in the weak formulation, seek a solution u such that u−uB ∈ H0.

Define the bilinear functional B : H2(Ω) ×H2(Ω) → R:

B(u, v) ≡ (∆u,∆v)Ω (3.3.2)

and the linear functional L : H2(Ω) → R:

L(v) ≡ (f, v)Ω − (g1, v)ΓN1
+ (g2, ∂~nv)ΓN2

(3.3.3)

Then, multiplying the residual by a test function v and integrating by

parts twice lets us express the problem in the weak formulation:

B(u, v) = L(v) ∀v ∈ H0 (3.3.4)

For convenience, assume that the finite element function space Hh can

interpolate the Dirichlet boundary conditions exactly, and that uB ∈ Hh.

Define a boundary constrained finite element space Hh
0 :

Hh
0 ≡

{

vh ∈ Hh : vh|ΓN1
= 0, ∂~nvh|ΓN2

= 0
}

(3.3.5)

Then, the Galerkin formulation is to find an approximate solution uh ∈

Hh such that uh − uB ∈ H0 and

B(uh, vh) = L(vh) ∀vh ∈ Hh
0 (3.3.6)

Defining the error e ≡ u− uh, subtract B(uh, v) from both sides of the

original weak equation (3.3.4) to obtain

B(e, v) = −B(uh, v) + L(v) ∀v ∈ H0 (3.3.7)

33

Divide Ω into subdomains, choosing the coarsest partition of each el-

ement such that each subdomain S ∈ K satisfies Hh|S ∈ H4(S). For a

macroelement-based finite element space, solutions on whole finite elements

may not have H4 regularity, in which case the subdomain partition will be the

set of subelements. Express B(e, v) as a sum of separate integrals over each of

these subelements

B(e, v) =
∑

S

[−(∆uh,∆v)S + (f, v)S − (g1, v)∂S∩ΓN1
+ (g2, ∂~nv)∂S∩ΓN2

] ∀v ∈ H0

(3.3.8)

Integrate by parts twice. The regularity of uh on subelements makes

this operation well defined.

B(e, v) =
∑

S

[(f − ∆2uh, v)S − (g1 − ∂~n∆uh, v)∂S∩ΓN1
+ (∂~n∆uh, v)∂S−ΓN1

+(3.3.9)

(g2 − ∆uh, ∂~nv)∂S∩ΓN2
− (∆uh, ∂~nv)∂S−ΓN2

] (3.3.10)

On any point on the shared side between two neighboring subelements

S and S ′, the normal vector ~nS = −~nS′ , so the normal derivative is negative

as seen from a subelement’s neighbor. Define the Laplacian jump on the

Neumann boundary of the domain as

[[∆uh]]ΓN2
≡ 2(g2 − ∆uh) (3.3.11)

Define the Laplacian jump to be zero on ΓD2, and define it on internal

sides as:

[[∆uh(~s)]]∂S ≡ lim
~x→~s,~x∈S′

∆uh(~x) − lim
~x→~s,~x∈S

∆uh(~x) (3.3.12)

34

Define the Laplacian flux jump on its Neumann boundary as:

[[∂~n∆uh]]ΓN1
≡ 2(g1 − ∂~n∆uh) (3.3.13)

Define the Laplacian flux jump to be zero on ΓD1, and define it on

internal sides as:

[[∂~n∆uh(~s)]]∂S ≡ lim
~x→~s,~x∈S′

∂ ~nS
∆uh(~x) − lim

~x→~s,~x∈S
∂ ~nS

∆uh(~x) (3.3.14)

Rearrange the summation by taking half of the internal side terms on

each subelement and assigning them to neighboring subelements, giving

∀v ∈ H0,

B(e, v) =
∑

S

[

(f − ∆2uh, v)S +
1

2
([[∂~n∆uh]] , v)∂S−

1

2
([[∆uh]] , ∂~nv)∂S

]

(3.3.15)

The error e can be decomposed into a finite dimensional interpolant

Ihe contained in Hh and a remainder Rhe ≡ e− Ihe. The bilinearity of B(·, ·)

allows a similar decomposition:

B(e, e) = B(e, Rhe) +B(e, Ihe) (3.3.16)

Combining (3.3.15) and (3.3.16) and using Galerkin orthogonalityB(e, vh) =

0 for vh ∈ Hh gives:

B(e, e) = B(e, Rhe)

=
∑

S

[

(f − ∆2uh, Rhe)S +
1

2
([[∂~n∆uh]] , Rhe)∂S −

1

2
([[∆uh]] , ∂~nRhe)∂S

]

(3.3.17)

35

Applying the Cauchy-Schwarz inequality:

B(e, e) ≤
∑

S

[

∣

∣

∣

∣f − ∆2uh
∣

∣

∣

∣

S
||Rhe||S +

1

2
||[[∂~n∆uh]]||∂S ||Rhe||∂S +

1

2
||[[∆uh]]||∂S ||∂~n(Rhe)||∂S

]

(3.3.18)

On a quasi-regular family of meshes, using an H2 conforming finite

element with a stable local basis such as the HCT elements, interpolation

theory [89] will give an upper bound for the approximation error on an element

in Hilbert space norms.

To simplify subsequent notation, a generic constant “C” will refer to

several constants which may differ from equation to equation. From interpo-

lation theory, there exists a C dependent only on Ω for which:

∀v ∈ H2(Ω),

||Rhv||K ≤ Ch2
K ||v||H2(Ω)

||∇Rhv||K ≤ Ch1
K ||v||H2(Ω) (3.3.19)

||Rhv||H2(K) ≤ C ||v||H2(Ω)

For elements like the HCT triangle with mesh-independent splittings,

the size hS of a subelement S contained in element K is proportional to the

element size hK . Function norms on S are bounded by function norms on K,

so the upper bound for the approximation error on macroelements is also an

upper bound for the approximation error on their subelements:

||Rhv||S ≤ Ch2
S ||v||H2(Ω)

||∇(Rhv)||S ≤ Ch1
S ||v||H2(Ω) (3.3.20)

||Rhv||H2(S) ≤ C ||v||H2(Ω)

36

Inverting the master to physical element transformation T : K̂ → K

lets us scale functions from S onto a subelement Ŝ of the master element.

v̂ ≡ v ◦ T (3.3.21)

||Rhv||2∂S ≤ Chd−1
S

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

2

∂Ŝ
(3.3.22)

Applying the trace theorem on the master subelement gives a bound

for boundary norms in terms of interior norms:

||Rhv||2∂S ≤ Chd−1
S

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

Ŝ

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

H1(Ŝ)
(3.3.23)

Scaling back to S gives upper bounds for the boundary norms of ap-

proximation errors based on their interior norms:

||Rhv||2∂S ≤ Chd−1
S

√

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

2

Ŝ

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

2

H1(Ŝ)

≤ Chd−1
S

√

∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

4

Ŝ
+
∣

∣

∣

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

∣

∣

∣

2

Ŝ

∣

∣

∣

∣

∣

∣
∇(v̂ − Îhv̂)

∣

∣

∣

∣

∣

∣

2

Ŝ
(3.3.24)

≤ Chd−1
S

√

h−2d
S ||Rhv||4S + h−dS ||Rhv||2S h2−d

S ||∇(Rhv)||2S

Applying the interpolation results from (3.3.19) gives subelement bound-

ary norms of approximation errors based on H2 global norms:

||Rhv||2∂S ≤ Chd−1
S

√

h8−2d
S ||v||4H2(Ω) + h4−d

S ||v||2H2(Ω) h
4−d
S ||v||2H2(Ω)

≤ Ch3
S ||v||2H2(Ω) (3.3.25)

||Rhv||∂S ≤ Ch
3/2
S ||v||H2(Ω)

Performing a similar process will provide a bound on approximation

errors of subelement boundary fluxes. First bound the flux norm in terms of

37

the vector norm of subelement boundary gradients, and then scale back to the

master subelement

||∂~nRhv||2∂S ≤ ||∇Rhv||2∂S

≤ Chd−3
S

∣

∣

∣

∣

∣

∣
∇̂(v̂ − Îhv̂)

∣

∣

∣

∣

∣

∣

2

∂Ŝ
(3.3.26)

apply the trace theorem on the master subelement

≤ Chd−3
S

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

H1(Ŝ)

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

H2(Ŝ)
(3.3.27)

and again scale the result back to the physical subelement

||∂~nRhv||2∂S ≤ Chd−3
S

√

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

2

H1(Ŝ)

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

2

H2(Ŝ)

≤ Chd−3
S

√

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

4

H1(Ŝ)
+
∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

2

H1(Ŝ)

∣

∣

∣
v̂ − Îhv̂

∣

∣

∣

2

H2(Ŝ)
(3.3.28)

≤ Chd−3
S

√

h4−2d
S |Rhv|4H1(S) + h2−d

S |Rhv|2H1(S) h
4−d
S |Rhv|2H2(S)

Finally, again apply (3.3.19):

||∂~nRhv||2∂S ≤ Chd−3
S

√

h8−2d
S ||v||4H2(Ω) + h4−d

S ||v||2H2(Ω) h
4−d
S ||v||2H2(Ω)

≤ ChS ||v||2H2(Ω) (3.3.29)

||∂~nRhv||∂S ≤ Ch
1/2
S ||v||H2(Ω)

We currently have a bound on B(e, e) = ||∆e||2Ω, but would like a bound

on the full H2 norm of the error. Coercivity of B on H0 can be derived from

regularity of the Laplacian operator ∆ given certain boundary conditions. If

ΓD1 ∪ ΓD2 = ∂Ω and this boundary is sufficiently smooth, then the regularity

result follows:

∀v ∈ H0,

||v||H2(Ω) ≤ C(||∆v||Ω + ||v||H3/2(ΓD1) + ||∂~nv||H1/2(ΓD2)
) (3.3.30)

38

When this regularity is applied to approximation error of a function

which exactly satisfies the Dirichlet boundary conditions, e|ΓD1
= 0 and

∂~ne|ΓD2
= 0, the result is an H2 error bound:

||e||2H2(Ω) ≤ C ||∆e||2Ω (3.3.31)

If the boundary is not smooth, but the problem has completely Dirichlet

boundary conditions where ΓD1 = ΓD2 = ∂Ω, it is still possible to prove the

coercivity of B by extending Ω to a superset Ω̃ with a smooth boundary. Given

any function v ∈ H0, extend it by v(x) = 0 ∀x ∈ Ω̃ − Ω, giving a function

ṽ ∈ H2
0 (Ω̃). Elliptic regularity in this case gives us:

||ṽ||H2
0 (Ω̃) ≤ C ||∆ṽ||Ω̃ (3.3.32)

Because ṽ = 0 on Ω̃ − Ω, it follows that ||ṽ||H2
0 (Ω̃) = ||v||H2

0 (Ω). Because

∆ṽ = 0 on Ω̃−Ω, it follows that ||∆ṽ||Ω̃ = ||∆v||Ω. Making these substitutions

again gives the required error bound (3.3.31).

Applying the interpolation results from (3.3.25) and (3.3.29) to the

right hand side of the error inequality (3.3.18), then applying the coercivity

property (3.3.31) to the left hand side, the result is an upper bound on the

square of the H2 error:

||∆e||2Ω ≤ C
∑

S

[

∣

∣

∣

∣f − ∆2uh
∣

∣

∣

∣

S
||Rhe||S +

1

2
||[[∂~n∆uh]]||∂S ||Rhe||∂S +

1

2
||[[∆uh]]||∂S ||∂~nRhe||∂S

]

||e||2H2(Ω) ≤ C
∑

S

[

∣

∣

∣

∣f − ∆2uh
∣

∣

∣

∣

S
h2
S ||e||H2(Ω) +

1

2
||[[∂~n∆uh]]||∂S h

3/2
S ||e||H2(Ω) +

1

2
||[[∆uh]]||∂S h

1/2
S ||e||H2(Ω)

]

(3.3.33)

39

Finally, dividing by ||e||H2(Ω) gives the error bound

||e||H2(Ω) ≤ C
∑

S

[

∣

∣

∣

∣f − ∆2uh
∣

∣

∣

∣

S
h2
S +

1

2
||[[∂~n∆uh]]||∂S h

3/2
S +

1

2
||[[∆uh]]||∂S h

1/2
S

]

(3.3.34)

Accumulating the subelement error contributions on each element K

gives an error estimator on macroelements:

ηK ≡
∑

S⊂K

[

∣

∣

∣

∣f − ∆2uh
∣

∣

∣

∣

S
h2
S +

1

2
||[[∂~n∆uh]]||∂S h

3/2
S +

1

2
||[[∆uh]]||∂S h

1/2
S

]

(3.3.35)

For PSH elements, the third derivatives of shape function are zero, and

the Laplacian flux jump terms vanish. For PSH elements in unforced prob-

lems, the interior residual terms likewise vanish, and the only nonzero terms

in the error bound are the Laplacian jumps across element and subelement

boundaries. For the HCT elements or for problems with forcing functions, all

terms must be taken into consideration to give a proven upper bound on er-

ror. For problems with inexactly interpolated Dirichlet boundary conditions,

an additional error term corresponding to the norm of this interpolation error

is necessary.

Even an approximate error indicator, however, may be sufficient for

directing AMR and obtaining a well-graded grid. A numerical example will

demonstrate this, using an error indicator limited to a single term: the Lapla-

cian jumps across element (but not all subelement) boundaries:

η′K =
√

hK ||[[∆uh]]||∂K (3.3.36)

40

Numerical experiments demonstrate that this reduced indicator per-

forms very well, despite the elimination of terms from the more rigorous es-

timator and despite our use of it for problems where the simplified PDE and

boundary assumptions do not all apply.

3.4 Adaptive Refinement for Steady Problems

With the error indicator (3.3.36), it is possible to automatically obtain

a finite element mesh which is graded to efficiently resolve the solution to a

new problem. By first finding approximate solutions on coarse meshes, an

automatic algorithm can obtain enough information about the true solution

to allow the creation of fine meshes which are adapted to the solution’s most

difficult to resolve features.

Practical adaptively-refined grids can be obtained iteratively. Begin

with the coarsest mesh M0 which defines the domain geometry. On each mesh

Mi, perform the following steps:

1. Find the Galerkin approximate solution uih, if possible using a projection

of ui−1
h as an initial solver iterate.

2. Apply the error indicator on each element in Mi.

3. Sort the elements by error, then uniformly refine some fraction F of the

elements with the highest indicated error.

4. Refine any “unrefined islands”: elements which are coarser than all their

neighbors.

41

5. Refine away “level two mismatches”: elements with any neighbors that

are more than one level more refined.

6. Call the resulting mesh Mi+1

7. Repeat until a specified number of degrees of freedom or error tolerance

is reached.

Several of the steps in this algorithm are pragmatic choices for AMR

performance, not strict mathematical requirements. Unrefined islands con-

strain the degrees of freedom of all neighboring elements, and if these neigh-

bors have been chosen for refinement by the error indicator then the unrefined

island appears to be a productive target for refinement itself. Requiring ele-

ments to be no more than one level more refined than their neighbors improves

the likelihood that the family of meshes will be quasi-regular. Finally, choos-

ing what fraction F of elements to refine is a tradeoff between computational

cost and mesh quality. Refining more elements at each adaptive step causes a

fine mesh to be reached in fewer adaptive steps, and thus with fewer expen-

sive numerical solutions. Refining fewer elements at each adaptive step means

that on average each element refinement decision is made based on error esti-

mates from a finer grid, which gives more optimally graded meshes and a less

expensive final solve.

3.5 Adaptive Refinement for Transient Problems

At each time step, the time discretization gives an elliptic boundary

value problem, with known data from the solution at the previous time step.

42

As the character of the time-evolving solution changes, so will the character

of the optimal meshes on which to discretize that solution. Optimally, the

approximate solution at each time step should be found on a mesh which has

been adapted to represent both the new and old solutions at that time step

efficiently and accurately.

At each adaptive step, the algorithm will refine some elements and

coarsen other elements to adapt the mesh to the evolving solution. Every

active element in the mesh is a potential candidate for immediate refinement,

which replaces that element with 2d “child” elements. Not all child elements

are candidates for immediate coarsening, however. Because coarsening replaces

a child element and all its “sibling” elements with their common “parent”, and

because we do not want to reverse more than one level of refinement at each

adaptive step, only elements without refined siblings are eligible for immediate

coarsening.

Calculating the Laplacian jump error indicator gives a scalar error in-

dicator value ηK on each active finite element K in the mesh. If a set of sibling

elements are all active, a useful error indicator on their common inactive parent

element Kp is:

ηKp = cη2
n

√

∑

K⊂Kp

ηK (3.5.1)

where n is the expected asymptotic order of convergence of the finite element

family used in the norm approximated by the error indicator, and cη > 1 is a

constant used to make coarsening behavior more conservative. The asymptotic

convergence rate n is used to make ηKp a reasonable predictor of the error

indicator on Kp during subsequent refinement steps, and cη makes it less likely

43

that coarsening will be based on an underpredicted Kp and thus followed by

immediate re-refinement on subsequent adaptive steps.

To optimize the accuracy of the transient simulation, we use these

AMR/C tools to roughly equidistribute the error indicator values between

mesh cells, refining to improve accuracy where the error indicator values rise

and coarsening to reduce computational cost where the error indicator values

fall. There are many possible strategies for AMR/C. In many of the adaptive

results herein, we choose to maintain a bounded degree of freedom count (and

thus an upper bound on simulation memory usage and cost) by refining to a

desired element count nd(t) as follows:

At time tn, if the number of active elements na in the mesh exceeds

nd(tn), then enough coarsenable elements are flagged for coarsening to elim-

inate the excess, with those elements having the lowest error indicators ηKp

chosen first. If instead nd(tn) > na, then enough active elements are flagged

for refinement to eliminate the deficit, with those elements having the highest

error indicators ηK chosen first.

The remaining sets of unflagged refinable active elements and unflagged

coarsenable parent elements are then sorted by error indicator values. Begin-

ning with the elements having lowest ηKp and highest ηK , elements are flagged

in pairs, one active element for refinement and one parent element for coars-

ening, for as long as pairs can be found satisfying ηKp < ηK .

If K is refined while the children of Kp are coarsened, then the number

of elements in the mesh will be unchanged, the number of “raw” degrees of

freedom in the mesh will be unchanged, and even after hanging node con-

44

straints are applied, the number of degrees of freedom in the mesh will be

unchanged. If ηKp < ηK , then this trade should provide a reduction in the

total error on the mesh at approximately the same computational cost.

3.5.1 Adaptive Time Discretization

In many physical problems of interest, adaptive discretization is also

necessary to efficiently resolve widely varying time scales. In the spinodal

phase decomposition problem in Section 7.9, for example, the rapid changes

in material concentration induced by phase separation and by the evolution of

many labyrinthine interfaces require small time steps to simulate accurately.

However, carrying out a simulation with such a small δt and uniform time

steps would then become unnecessarily inefficient in later time steps where

well-separated phases and long interfaces lead to slow, smooth time evolution

which can be accurately approximated with long time steps.

To choose efficient and accurate time step sizes, we again attempt to

equidistribute locally computable discretization error estimates. For each time

step, the simulation is advanced from time tn to tn+1 ≡ tn+ δt in two different

ways, by taking two time steps of size δt/2 to calculate the next solution un+1

from un, and by taking a single time step of length δt to calculate ûn+1 from

un. The local relative time discretization error estimate for this time step is

ên ≡ ||un+1 − ûn+1||
maxun+1, ûn+1)

(3.5.2)

and the global relative time discretization error estimate is

en ≡ ên
δt

(3.5.3)

45

The time step adaptivity is based on a target error tolerance eTOL and

a maximum acceptable error tolerance eMAX . If at a time step n the solution

achieves en < eMAX , then the time solver proceeds with a new time step size

δtn+1 ≡ δtn ·
(

eTOL
en

)1/p

(3.5.4)

where here p is the global convergence rate of the timestepping algorithm being

used; e.g. p = 2 for the trapezoidal rule.

If at a time step n the time solver finds en < eMAX , or if the nonlinear

solver fails, then that time step is discarded and is recalculated with a smaller

δtn.

The finite element techniques used in this work are compatible with

a wide variety of time discretization methods. For other techniques in time

truncation error estimation and adaptive time step control see [106, 127].

46

3.6 Biharmonic Benchmark Problem

To verify and demonstrate the performance of this AMR scheme with

macroelements on fourth-order problems, we construct a benchmark bihar-

monic problem with a singularity and a closed form analytic solution. We

anticipate that this problem will be of general value to the engineering com-

munity as a benchmark for verification studies of numerical techniques [110].

Selection of benchmarks for Stokes and Navier-Stokes flow studies is a well

known difficulty. For example, the driven cavity problem is the best known

benchmark for incompressible flow with a sharp singularity, but from a model-

ing standpoint the discontinuous boundary conditions and lack of an analytic

solution are unfortunate. The following proposed new benchmark problem is

constructed with a known analytic solution for Stokes flow with a singular-

ity, and could be extended to Navier-Stokes flow by adding the appropriate

manufactured forcing function on the domain interior.

We begin with a related exterior flow problem that has an analytic series

solution in polar coordinates. From this, a specific test problem is constructed

by choosing boundary conditions which correspond to only a single term in

that series.

Benchmark Problem: Consider an attached viscous fluid flow around

the edge of a flat plate on the positive x axis. Any 2D incompressible velocity

field can be expressed by a scalar streamfunction u, unique up to a constant,

where the velocity ~v is given by the curl of u: ~v ≡ ∂yu~ex − ∂xu~ey. In the low

Reynolds number limit, flow is described by the incompressible Stokes equa-

tions; these are equivalent to the streamfunction equation ∆2u = 0. No-slip

47

and no-penetration boundary conditions on the velocity at the plate imply

that the gradient of the streamfunction is zero along the plate. Because the

streamfunction is only unique up to a constant, arbitrarily choose to set it to

u = 0 at the plate tip. Then, the zero gradient of u leads to the essential

boundary conditions u = 0 and ∂~nu = 0 along the entire plate. These bound-

ary conditions make it simple to find a family of admissible solution modes

by expressing the problem in polar coordinates r and θ and using separation

of variables. For the benchmark problem, we choose one of the two domi-

nant streamfunction modes near the plate edge, the mode corresponding to

attached flow around the edge:

u ≡ r3/2 (sin(3θ/2) − 3 sin(θ/2)) (3.6.1)

The streamfunction u and vorticity ∆u of this flow are plotted in Fig-

ure 3.1. Although the streamfunction appears smooth, its second derivatives

are singular at the plate tip.

Figure 3.1: Streamfunction (left) and vorticity (right) for inviscid flow around
a sharp edge.

48

We set the plate location P to be the positive x axis, and solve the

streamfunction problem ∆2u = 0 on the domain (−1, 1) × (−1, 1) − P . The

boundary conditions along P are as described above, and we use the analytic

u to give essential boundary conditions on the outer boundary. Using the

notation introduced in Section 3.3, in this problem ΓD1 = ΓD2 = ∂Ω.

Note that except for along the plate, the boundary conditions for this

problem are not exactly representable by the piecewise cubic boundary values

and piecewise quadratic boundary fluxes of an HCT macroelement approx-

imation space. In the finite element approximation, rather than solve the

weak approximation (3.3.6) with exact boundary conditions, we enforce the

essential boundary conditions using a penalty method as described in Section

5.6. Recall the Galerkin formulation of the approximate problem: to find

uh ∈ Hh + uB such that

B(uh, vh) = L(vh) ∀vh ∈ Hh
0 (3.6.2)

Instead, choose a small penalty value 0 < ǫ ≪ 1, and find uh ∈ Hh

such that ∀vh ∈ Hh,

B(uh, vh) +
1

ǫ
[(uh, vh)ΓD1

+ (∂~nuh, ∂~nvh)ΓD2
] = (3.6.3)

L(vh) +
1

ǫ
[(uB, vh)ΓD1

+ (∂~nuB, ∂~nvh)ΓD2
] (3.6.4)

This is equivalent to solving the weak formulation of the biharmonic

problem with the Robin boundary conditions

ǫ ∂~n∆u|ΓD1
= u− uB (3.6.5)

ǫ∆u|ΓD2
= ∂~nu− ∂~nuB (3.6.6)

49

As ǫ → 0, these boundary conditions approach the desired Dirichlet

conditions.

The approximate solutions in Figure 3.1 are obtained using libMesh

[86], a C++ finite element library designed to support parallel computations on

adaptive hybrid meshes. To support calculations of problems in W 2,p spaces,

we have added library support for several C1 elements including the cubic

Clough-Tocher triangles used for this numeric example. Support for hanging

node constraints on C1 elements in adaptive meshes was implemented via the

projection method described in Section 3.1, and support for calculations of

basis function second derivatives was added to the library.

Linear system coefficients are calculated by numerical integration with

double precision arithmetic, using a Gaussian quadrature rule exact for sixth

degree polynomials on each subtriangle. The adaptive error indicator derived

in Section 3.3 is used to guide AMR, and “exact” error values are numerically

integrated using the same quadrature rule. The linear solver uses a stabilized

biconjugate gradient (BICG) solver, with an incomplete LU factorization for

preconditioning. A penalty value ǫ = 10−10 was used to define the boundary

conditions.

To fairly compare uniform and adaptive results, in Figure 3.2 approx-

imation errors are plotted against the number of unconstrained degrees of

freedom in the finite element space.

The second derivatives of the exact solution u become singular at r = 0,

and this singularity limits the accuracy that can be expected from uniformly

refined meshes. The exact solution is not contained in H3(Ω), and referring

50

back to the error estimates in Section 2.5 note that in theH2 norm approximate

solutions on uniform meshes are only expected to converge with sublinear

accuracy with respect to h. On a uniformly refined 2D mesh, h is inversely

proportional to the square root of the number of degrees of freedom N , and

the error plot in Figure 3.2 confirms a convergence rate below O
(

N−1/2
)

in

the uniform case.

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Degrees of Freedom

E
rr

or
 F

ra
ct

io
n

Error Convergence, Flow Around Edge

Uniform Refinement L
2
 Error

Uniform Refinement H1 Error
Uniform Refinement H2 Error
Adaptive Refinement L

2
 Error

Adaptive Refinement H1 Error
Adaptive Refinement H2 Error

Figure 3.2: Galerkin approximation error in L2, H
1, and H2 norms, scaled by

the solution norm and evaluated on both uniform and adaptive meshes for the
cusp flow problem.

For the adaptive refinement strategy, we repeatedly refine the 25% of

elements with the highest error levels as reported by the laplacian jump error

indicator. The choice of 25% refinement in each step is arbitrary.

The adaptive refinement algorithm appropriately grades the mesh into

the singularity, as shown by Figure 3.3, which displays an adaptive mesh at a

typical stage of the refinement process. As expected, here the AMR algorithm

51

adds the most degrees of freedom near the plate edge, to resolve the solution

there. The error in this sequence of adaptively meshed solutions quickly drops

below the errors in uniform solutions with equal numbers of degrees of freedom.

Figure 3.3: An adaptively refined mesh obtained for the cusp flow problem.

52

Chapter 4

Software Design

4.1 Finite Element Library

The parallel adaptive work described here applies and extends the ca-

pability of the libMesh framework [86]. Core features of the library include:

1. Support for mixed finite elements on hybrid unstructured grids in one

through three dimensions.

2. Adaptive mesh h-refinement of Lagrange elements with hanging nodes

3. Parallel system assembly and solution

4. Integration with third party software packages such as:

(a) PETSc and LASPack sparse linear algebra

(b) METIS and ParMETIS mesh partitioning

(c) Triangle and Tetgen mesh generation

5. Mesh and solution export and import using common data and visualiza-

tion formats

6. Inline API documentation with Doxygen [73]

Some of the new contributions made as part of this dissertation work

include:

53

1. Macroelement construction and quadrature rules

2. C1 macroelement, Hermite finite element classes

3. Basis Hessian calculations

4. Parallel adaptivity for general element types

5. Projection, interpolation for general element types

6. Parallel distributed mesh data structures and algorithms

7. New nonlinear FEM solver framework

8. New time integration framework

9. Adaptive time integration

10. Additional spatial adaptivity strategies

11. Additional error estimators

12. Utilities for parametric and Monte Carlo studies

4.2 Object Oriented Design Abstractions

The libMesh software has been developed via a group effort to cre-

ate general purpose parallel adaptive finite element tools. Because libMesh

is available to the scientific community as a publically downloadable open

source project, it has attracted users and collaborators both nationally and

internationally. What makes this collaboration feasible, however, is the use of

Object Oriented Programming principles to modularize the code, making it

54

easier for new developers to add additional capabilities and features without

compromising the existing Application Programming Interfaces.

libMesh is written in C++ [93] and uses abstract base classes to rep-

resent fundamental building blocks of finite element software. Both library

code and user code call methods from the abstract interfaces which provide

generic support for a wide variety of possible implementations. The C++ lan-

guage virtually dispatches those function calls to concrete library classes which

implement those interfaces for a specific type of object. Standard design pat-

terns [65] such as factory methods, template methods, and strategy classes

make it easy for user code to use these capabilities.

A few core examples illustrate this concept. In Figure 4.1, a simplified

part of an inheritance tree is shown, which ends with geometric element objects

as specific as a 27-noded hexahedron, implemented in the Hex27 class. Code

common to all hexahedra is shared with all classes which derive from the Hex

parent class. Code common to all three-dimensional elements is shared with

all derivatives of the Cell grandparent class. A Cell is a type of Elem, which

is the only class which most libMesh application codes need to interact with

to perform operations on and calculations for arbitrary geometric elements.

Finally, libMesh can associate degrees of freedom with geometric elements by

using the parent DofObject class internal to the library.

Similarly, quadrature rules and finite elements are represented by class

hierarchies in Figures 4.2 and 4.3. Application physics routines initialize an

FEBase reference with each geometric Elem object in the mesh in turn, and

then use the FEBase interfaces to request shape function values, derivatives,

55

Elem

#_nodes: Node **

#_neighbors: Elem **

#_parent: Elem *

#_children: Elem **

#_*flag: RefinementState

#_p_level: unsigned char

#_subdomain_id: unsigned char

+n_{faces,sides,vertices,edges,children}(): unsigned int

+centroid(): Point

+hmin,hmax(): Real

NodeElem FaceEdge Cell In fQuad InfCell

Pr ism H e x Pyramid Tet

H e x 8 H e x 2 0 H e x 2 7

DofObject

-_n_systems: unsigned char

-_n_vars: unsigned char *

-_n_comp: unsigned char **

-_dof_ids: unsigned int **

-_id: unsigned int

-_processor_id: unsigned short int

Node

Figure 4.1: A simplified UML diagram of part of the libMesh geometric ele-
ment hierarchy.

56

etc. as necessary to evaluate the desired weighted residual equations and their

derivatives. A quadrature rule object derived from the QBase class uses the

global polynomial degree information supplied by the FEBase object, along

with any local p-refinement information from the Elem object, to choose an

appropriate quadrature to use. The combination of a specific finite element

family type, quadrature rule type, and geometric element determines the spe-

cific calculations performed by the library; for example, when using a QGauss

object and FE<LAGRANGE> object initialized with a Hex27 element, the appli-

cation physics would be given shape function information appropriate to the

integration of Lagrange basis functions on that hexahedron using a Gaussian

quadrature rule. Using abstract interfaces enables a great degree of modu-

larity, separating the users’ physics code from the specific choices of spatial

discretization. It also enables a great degree of code reuse, as algorithms which

apply to all geometric elements, all finite elements, etc. need only be written

once using the abstract interfaces.

QBase

+_points: vector<Point>

+_weights: vector<Real>

+init(ElemType,p_level)

QGauss

QSimpson

QGrid

QClough

Figure 4.2: A simplified UML diagram of part of the libMesh quadrature rule
class hierarchy.

The libMesh library has been expanded to facilitate the present work

57

FEBase

+phi: vector<vector<Real> >

+dphi: vector<vector<RealGradient> >

+d2phi: vector<vector<RealTensor> >

+JxW: vector<Real>

+quadrature_rule: QRule

+reinit(Elem)

+reinit(Elem,side,)

Lagrange

H e r m i t e

Hierarchic

Monomia l

CloughTocher

Figure 4.3: A simplified UML diagram of part of the libMesh finite element
class hierarchy.

by adding an additional abstraction, this time designed to represent entire Ini-

tial/Boundary Value Problem systems of equations. Instead of requiring each

application code to implement a nonlinear solver scheme and time stepping

scheme, and to do so for the entire system of weak equations at once, the new

FEMSystem object simply requires user code to supply the weak residuals (and

optionally Jacobians for efficiency) of constraint equations Gi(u, vi) = 0 and

time derivative terms (∂u
∂t
, vi) = Fi(u) integrated over a single mesh element.

These terms are defined by abstract interfaces in the FEMSystem base class

shown in Figure 4.4, and application physics is then written by defining a

subclass with concrete implementations of those interfaces. Simulation pro-

grams instantiate subclasses of a nonlinear solver object as in Figure 4.6 to

find algebraic system solutions, as well as subclasses of a TimeSolver object

as in Figure 4.5 to do time integration (or to find a steady-state solution, or

58

eigenvalues and eigenfunctions, etc.).

FEMSystem

+elem_solution: DenseVector<Number>

+elem_residual: DenseVector<Number>

+elem_jacobian: DenseMatrix<Number>

#elem_fixed_solution: DenseVector<Number>

#*_fe_var: std::vector<FEBase *>

#elem: Elem *

+*_time_derivative(request_jacobian)

+*_constraint(request_jacobian)

+*_postprocess()

NavierStokesSystem

LaplaceYoungSystem

CahnHi l l iardSystem

Sur fac tantSystem

Figure 4.4: A simplified UML diagram including the libMesh FEMSystem
boundary value problem abstract base class. Application code authors write
physics-specific subclasses of FEMSystem to implement particular mathemat-
ical models.

TimeSolver

+*_residual(request_jacobian)

+solve()

+advance_timestep()

SteadySolver EulerSolver

TrapezoidalSolver EigenSolver

Figure 4.5: A simplified UML diagram of part of the libMesh ODE solver
class hierarchy.

There are several benefits of this type of design. It has enabled easier

implementation of new physics models in the diverse application studies to

59

Nonl inearSolver

+*_tolerance

+*_max_iterations

+solve()

QuasiNewtonSolverLinearSolver

Cont inuat ionSolver

Figure 4.6: A simplified UML diagram of part of the libMesh nonlinear alge-
braic solver class hierarchy.

follow, encapsulated implementation details from application code, improved

testing coverage and reliability, and given library-level code better access to

specific application physics.

The first benefit, easier implementation of new and more complex sys-

tems of equations, was the primary motivation for this code refactoring. This

dissertation includes experiments based on physical systems which have much

fundamental physics in common but which model that physics with signifi-

cantly differing sets of equations. By factoring out as much common code

as possible, the total work necessary to implement several physics applica-

tions has been significantly reduced. The divergence-free flow, thin film flow,

and phase decomposition studies to come are developed using many shared

components, with differences only in physics-specific code.

Encapsulation of implementation details from user code is important

not just because it reduces the complexity of user code, but because it makes

that code more extensible. With the FEMSystem framework, once a core library

60

feature like an adaptive time-stepping strategy or a new inexact Newton solver

has been written, using it in a simulation is simply a matter of instantiating

an object of the new class, without having to modify existing physics code.

The AdaptiveTimeSolver algorithms used in the Cahn-Hilliard parameter

studies to follow, for example, were first tested on more straightforward linear

equations which allowed for easier development and debugging.

The improvement in testing coverage comes about because of the reuse

of code. Code which has been factored out of physics-dependent software files

is executed in several different applications, each of which is a new opportunity

to shake out bugs. Code which has been generalized enough to add to the core

libMesh library receives public testing as well. Adding new features becomes

more worthwhile and more practical when they only need to be written and

debugged once, rather than once for each time they are used.

Finally, by giving the libMesh library itself the ability to evaluate the

weighted residual equations for a specific application on an element-by-element

level, we can enable library algorithms that were impractical to implement

when user code was required to perform a full system assembly itself. In

the present work, the use of finite differenced element residuals to numeri-

cally approximate Jacobians on each element enabled rapid prototyping of new

equations. Using numeric instead of analytical Jacobians in nonlinear solvers

provides solutions that may be more expensive in CPU time but are cheaper

in programmer time and less error-prone. Even when analytical Jacobians

were implemented for each application code, the numerical Jacobian capabil-

ity still provided a useful error detection system, catching bugs in analytical

61

Jacobian code by comparing numerical and analytic results entry-by-entry.

Future uses of the new element-by-element physics API may include improved

physics-dependent error estimators or adjoint techniques for inverse problems.

4.3 Parallel Implementation

Parallel execution of libMesh applications is supported on shared mem-

ory, distributed memory, and multilevel parallel computers. The Intel Thread-

ing Building Blocks [109] library is used to enable parallel computation on

groups of processors (or, equivalently, processor cores) that share a single

memory address space. In a distributed memory “cluster” computing envi-

ronment, the Message Passing Interface (MPI) standard [92] is used to enable

parallel communication between processors or groups of processors that access

separate address spaces.

In libMesh, degrees of freedom on a finite element mesh are stored

topologically on degree of freedom objects corresponding to element vertices,

edges, faces, and interiors. For each degree of freedom, the corresponding

basis function has support on the set of elements which “contain” its degree

of freedom object, where an element is considered to contain its own vertices,

edges, etc. This definition is independent of any internal edges and vertices

which are part of a macroelement splitting. By treating any associated degrees

of freedom as ordinary element interior degrees, the software storing them does

not need to be aware of subelements, and can operate independently of the

element types in use on a mesh.

The parallel distribution of global vectors and matrices follows directly

62

from the parallel subdivision of the mesh itself; the challeneges of load balanc-

ing [74] are then handled by the partitioning and repartitioning of the mesh.

A partitioner such as METIS assigns each element of the mesh to a particular

subdomain, and all degrees of freedom which are assigned to with elements

from only a single subdomain are “owned” by the processor associated with

that subdomain. Degrees of freedom on the boundary of multiple subdomains

could be assigned to any of the processors associated with those subdomains.

In libMesh such degrees of freedom are simply assigned to the eligible proces-

sor with the lowest MPI rank number. The degree of freedom numbering is

performed subdomain-by-subdomain, so that each processor owns a contiguous

set of degree of freedom indices.

While each degree of freedom may only be owned by one processor,

some may still be synchronized with “ghost” degrees of freedom on neighbor-

ing processors. Calculations along interfaces between neighboring elements,

for example, can require data from “ghost” elements adjoining the local pro-

cessor’s subset of the mesh. When operating in parallel, this data is kept

synchronized by libMesh before every assembly operation and synchronized

by the linear solver package before each matrix-vector multiply.

To enable parallel solutions of the nonlinear algebraic systems gener-

ated by our finite element code, the libMesh algebra interface has a concrete

implementation which uses the PETSc solver library [8] to perform sparse lin-

ear solves. The Krylov algorithms and linear preconditioner options available

in PETSc are thus made available in libMesh. Most of the results to follow

below are obtained using the Generalized Minimal Residual Method with Ja-

63

cobi preconditioning which is easily parallelized, or with parallel block Jacobi

preconditioning using an ILU subpreconditioner on each block. The PETSc

nonlinear solvers are also now available via libMesh interfaces; however, in our

numerical experiments better performance was obtained by using the PETSc

linear solvers within the hand-coded inexact Newton nonlinear solver described

in Section 4.4.

Mesh Parallelization In most of the results below, the resulting partitioned

mesh is stored as an object of the SerialMesh class. SerialMesh objects

store a copy of the entire mesh on every processor, in vectors of Node and

Elem objects which represent each node and element. In the course of an

adaptive simulation, a SerialMesh is kept in a conceptually identical state

by synchronizing all mesh refinement and coarsening flags between processors.

When applying the same AMR/C operations to the same mesh, each processor

ends up creating and deleting new elements and nodes in the same order, and so

the location and id of each element and node remains consistent from processor

to processor. This design works well for coarse and moderate-scale parallelism,

but it limits scalability on very large clusters and it can cause problems on

very fine meshes to be limited by per-processor available memory.

To enable memory savings and better parallel speedup on large-scale

problems, a ParallelMesh class has been developed and is being tested. Ob-

jects of this class are divided in memory to improve scaling on distributed-

memory clusters. Each ParallelMesh object uses hash maps rather than

vectors to store nodes and elements. Hash maps retain the O (1) index lookup

efficiency of vector-based storage, but for Ne elements distributed among Np

64

processors, a hash map only has O (Ne/Np) memory requirements, rather than

the O (Ne) memory usage of full vectors. On each processor, instead of allocat-

ing copies of every element and node in the mesh, a ParallelMesh allocates

copies of only local elements and of “semilocal” elements which share nodes

with local elements. Semilocal elements include ancestor elements (i.e. parent

elements as described in Section 3.5, parents of parent elements, etc.) which

are needed for various operations on hierarchically-refined meshes, as well as

neighbor elements, which are needed for discontinuous Galerkin calculations,

certain flux-based and patch-recovery-based error estimators, and constraint

calculations on hanging nodes.

The memory savings enabled by mesh parallelization is illustrated in

Figure 4.7, a graph of per-node memory usage for a benchmark application

tested with a uniformly refined sequence of meshes. Although the hash table

overhead makes a ParallelMesh take up slightly more memory when con-

structed on a single node, on two or more nodes the improvements seen with a

parallel mesh can be dramatic. Even on the relatively small cluster used here

(four quad-processor nodes with 4GB memory each), much larger problems

can be solved before running out of physical memory.

The memory efficiency and scalability improvements enabled by a dis-

tributed memory mesh come at a cost of increased network communication

and increased code complication when adaptive refinement and coarsening are

brought into play. The following examples illustrate some of the increasing

complexity:

Mesh refinement creates new nodes and elements which need to be given

65

10

100

1000

10000

1000 10000 100000 1e+06 1e+07

R
A

M
 U

se
d

(M
B

)

Mesh Size (elements)

SerialMesh vs. ParallelMesh Per-Node Memory Usage

1 Node Serial
1 Node Parallel

2 Node Serial
2 Node Parallel

4 Node Serial
4 Node Parallel

8 Node Serial
8 Node Parallel
16 Node Serial

16 Node Parallel
32 Node Serial

32 Node Parallel

Figure 4.7: SerialMesh vs. ParallelMesh per-node resident memory usage, for
a benchmark application using uniformly refined meshes on varying numbers
of processors.

globally unique ids. A refined libMesh mesh is a hierarchical data structure

(binary tree, quadtree, or octree, depending on dimension), similar to other

parallel octree work [124], but rooted in a fully unstructured coarse mesh which

may also contain pyramid, prism, or tetrahedral elements. Parallel adaptive

refinement of pure tetrahedral meshes [45] is also found in the literature, using

edge collapse techniques rather than hierarchic refinement and hanging nodes.

In libMesh, where each processor has a unique integer processor id (i.e. the

MPI rank), a processor with id r is allowed to temporarily reserve any element

or node id i satisfying i mod (Np + 1) = r. This ensures global id uniqueness

when the object being identified is first created. New elements and nodes are

then synchronized between processors based on a unique topological or geo-

metric identification, after which a separate parallel renumbering operation

then reassigns element and node ids into contiguous blocks for later conve-

66

nience. This parallel renumbering must be done in four stages for efficient

parallel operations: one pass to count the number of local objects, followed by

a parallel broadcast of the number of objects on each processor, a second pass

to actually assign each local object an id, and a second parallel communica-

tion to request ids from semilocal objects. This parallel renumbering algorithm

is an O (Ne/Np +Np) operation. A more straightforward numbering scheme,

where processor r completely finishes numbering before telling processor r+1

which id to use to start numbering, would have required O (Ne) runtime, be-

cause although each processor would still only be performing O (Ne/Np) work,

each processor would also spend O (Ne) time waiting for the other processors

to finish.

Mesh repartitioning requires nodal geometry and element connectivity

data to be transferred from processor to processor. In libMesh, the fundamen-

tal data defining each element or node is first converted into a format suitable

for an MPI message, then collected into groups for each destination processor,

and finally transmitted and used to construct new objects by the elements’

and nodes’ new owners.

Mesh refinement flags require processing to satisfy level-one rules and

other such heuristics while simultaneously maintaining consistency between

processors. To accomplish this, a processing loop first makes heuristic updates

to its local element flags as necessary, then updates flags on its semilocal

elements to match values requested from neighboring processors, then repeats

until every processor has consistent and valid flags.

Element neighbor connectivity information is not as simple to describe

67

when a ghost element’s neighbors may not all exist on the local processor.

To signify this condition, a “RemoteElem” singleton object is created, which

acts as a placeholder target for such topological links. It can be complicated

to maintain the correctness of these remote element links over the course of

repeated adaptive refinements and coarsenings in a transient problem.

Finally, even with a working parallel data structure, making practical

use of it may require many auxilliary algorithms to be parallelized as well.

File input/output requires either complicated cooperation between all nodes

or less efficient chunk-by-chunk data serialization to a single I/O node. Mesh

generation can be done by building a coarse serial mesh, distributing it in

parallel, then performing parallel refinement, but generating the original mesh

in parallel may be more convenient or efficient. Even simple operations such as

calculating a bounding box or finding the element containing a desired point

may need to be re-examined with parallel operation in mind.

For certain common operations, the algorithm developments which were

necessary to support distributed memory ParallelMesh data structures also

proved to be beneficial when used on shared memory SerialMesh data struc-

tures. Calculations using libMesh with SerialMesh objects on multiple pro-

cessors have always parallelized the most computationally expensive steps in

a finite element code: the solution of the nonlinear algebraic systems of equa-

tions, and the assembly of the residuals and Jacobians of those equations.

However, other steps that are necessary on adaptive unstructured meshes have

turned out to be just as amenable to parallelization. Hanging node constraint

equations are now calculated only on local processors, then synchronized over

68

the network. Degree of freedom numbering is now done by each processor

for its own local subset of the mesh, then broadcast to other proceseors while

numberings for those processors’ subsets are received. Localization of work,

which is necessary with a parallelized mesh structure that only gives each

processor access to local and semilocal data, is still reasonable even when pro-

cessors would be capable of redundantly duplicating each others’ workload.

On a serialized mesh, the synchronization between processors is still an O (Ne)

operation, so the localized algorithms are not asymptotically more efficient

than a simple duplication of work. However, on a distributed parallel mesh,

the only data in need of synchronization lies on ghost elements. A typical

d-dimensional mesh has on the order of O

(

N
1/d
p N

(d−1)/d
e

)

ghost elements. So,

for a simulation parallelized in such a way that Ne ≫ Np, mesh synchro-

nization costs are limited, and parallel mesh modifications are expected to be

dominated by the O (Ne/Np) asymptotic cost of the local workload.

The computational benefits of serial vs. parallel mesh data structures

depend on the size of the mesh being used, on the number of nodes being

used in a distributed memory machine to operate on that mesh, and on the

memory capacity of each node. For small and intermediate-sized problems, the

wasted CPU effort required to perform serial mesh operations on every node

of a cluster may be worthwhile. This duplication of work avoids the many

network messages which would be required to perform synchronization steps

and maintain consistency between different processors’ parts of a parallelized

mesh. On finer meshes running on more processors, the improved scalability

of mesh operations on a parallel mesh can reverse this tradeoff. The more

frequent synchronization steps required by a parallel mesh are also relatively

69

less expensive on larger meshes, because at each step each processor needs

only to receive information about its own ghost elements, not information

about every element in the mesh as is required by a serial mesh. The clearest

benefits for parallel mesh data structures are on very fine meshes. If a fully-

refined serial mesh would be too large to fit alongside other finite element and

linear algebra data structures in the free physical memory on a single node,

then parallel distribution of that mesh among all the nodes in a cluster is an

indispensible feature to have.

70

4.4 Newton-Krylov Methods

For most of the physical systems simulated in this work, discretization

in space and time eventually reduces the simulation problem to the solution of

nonlinear systems of algebraic equations, F (~u) = 0 at each time step. When

the nonlinearity of F is not strong, such as in the slowest flow regimes in

Section 5.4, successive approximation can be used to find a linearly converg-

ing sequence ~uk approaching the desired solution. However, to reliably solve

general nonlinear problems and to attain rapid solution convergence, a more

sophisticated solution procedure is preferable.

When F possesses Lipschitz-continuous derivatives in a neighborhood

of its zero, Newton’s method converges and attains asymptotically quadratic

convergence from starting iterates sufficiently near this root [99]. However,

even when this assumption holds for a particular system of equations, Newton’s

Method is limited in the context of solutions of nonlinear discretized PDEs, by

the difficulty of obtaining efficient solutions to the large linear systems which

must be solved at each iteration, and by the limited domain of attraction in

which a successful starting iterate must lie. For some problems, an appropriate

initial Newton iterate may be obtained from the results of another method such

as successive approximation or parameter continuation; however our inexact

Newton solver is intended to reliably provide convergence even from an initial

iterate outside the region of convergence of a strict Newton scheme.

At each iterate ~u(k) in a Newton iteration, a linear approximation L ≈ F

can be written as

L(~u) = F (~u(k)) + F ′(~u(k))(~u− ~u(k)) (4.4.1)

71

Assuming F ′(~u(k)) is invertible, the approximation L has a single root which

is used as the next Newton iterate: L(~u(k+1)) = 0 where

~u(k+1) = ~u(k) −
[

F ′(~u(k))
]−1

F (~u(k)) (4.4.2)

This is often an impractical equation to solve exactly in the context of a

residual F in a Finite Element Method formulation. At each step the Jacobian

F ′ is typically a sparse N × N matrix, requiring O (N) memory to store in

a sparse format and O (N) CPU time to use in a matrix-vector product. Its

inverse [F ′]−1, however, is typically not a sparse matrix, and its many non-

zero entries lead to O (N2) storage requirements. Even the action of [F ′]−1 on

a particular residual vector typically requires O (N3) CPU time to calculate

via “exact” direct solvers, and in this context the meaning of “exact” typically

depends on interactions between the conditioning of the matrix and the floating

point error of the computer used to solve the linear system. For all but the

smallest problems, indirect linear solvers are a more efficient way to obtain a

solution to a desired tolerance. The nonlinear solver newly implemented in

libMesh is a modification of a standard Newton-Krylov method, which uses

preconditioned Krylov iterations for the linear solve at each Newton step until

the specified relative linear system residual reduction for that step is achieved,

as shown in Figure 4.8.

By beginning with a linear tolerance well in excess of the final desired

nonlinear tolerance, the Newton-Krylov method avoids wasting computational

effort on “oversolving” early linear systems. But, by choosing residual reduc-

tion tolerances for the Krylov solver that adaptively decrease as the nonlin-

ear residual decreases, the Newton-Krylov method maintains the expected

72

Input init ial i terate u,
init ial l inear residual reduction tolerance t,
nonlinear residual reduction tolerance n,

tolerance scaling factor s

Update quasi-Newton iterate:
u := u + x

Ask application code to construct
current Jacobian J=F’(u)

Take preconditioned Krylov step
For the system Jx=-r

Is l inear convergence
test met?

|Jx+r| < t | r |

Is nonlinear convergence
test met?
|r | < n | r0|

Finished

Reduce linear residual reduction
tolerance t to satisfy t<s|r|

Ask application code to construct
current nonlinear residual r = F(u)

No

No

Yes

Yes

QUASI-NEWTON STEP

Construct precondit ioner for
current Jacobian J

Figure 4.8: The core loops in a Newton-Krylov solver.

73

quadratic convergence near the root of F . The choice of Krylov solver toler-

ances is a subject of extensive prior research [24, 49, 51, 125] but is somewhat

problem dependent. In the results demonstrated below, the libMesh solver

is typically configured to begin each nonlinear solve with a linear residual re-

duction tolerance of 10−3, further decreasing this tolerance as the nonlinear

residual is reduced. Using a smaller linear solver tolerance has the effect of

leading to nonlinear solves which utilize fewer inexact Newton steps but more

Krylov steps. Numerical experience with the FEM applications to follow sug-

gests that this tradeoff often reduces the overall CPU time used. Particularly

with higher order elements on unstructured grids, assembling a new Jacobian

matrix and a corresponding preconditioner for a new inexact Newton step is

much more expensive than evaluating a few sparse matrix-vector multiplies

for a Krylov step.

To improve the reliability of the nonlinear solver, the solution to the

linear solve in a Newton-Krylov step is not necessarily immediately used to

update the nonlinear solution iterate for the next inexact Newton step. In

all of the application problems tested in this thesis, simply using unmodified

linear solver solutions for every step leads to solver divergence for some prob-

lem parameters. A reliable nonlinear solver must be able to recover from a

diverging iteration, and the solver implemented for this work does so in several

ways:

Although the Newton-Krylov method is guaranteed to give quadratic

convergence near the exact zero of F , when ~u(k−1) is too far from this root,

an inexact Newton step may not even reduce the residual. To make conver-

74

gence more likely without requiring more expensive linear solves, if
∣

∣

∣

∣F (k)
∣

∣

∣

∣ ≥
∣

∣

∣

∣F (k−1)
∣

∣

∣

∣ then a line search in the direction of ~u(k) − ~u(k−1) is used to find

a point with reduced residual. With problems for which F is twice differen-

tiable, a line search in the direction of an exact Newton step is guaranteed to

find a reduced residual. A line search based on Brent’s Method [22] for mini-

mization has been developed and implemented in the present algorithm: First,

step sizes are progressively halved, until some step length which produces a

residual reduction is found. Finding such a reduction eventually would be in-

evitable if the linear system (4.4.2) were solved exactly, since Newton’s Method

provides a descent direction at any differentiable point. In practice, our nu-

merical methods typically produce descent directions even for inexact linear

solves. Once a step size z is found to provide a residual reduction, we have

a bracket for the function f(x) ≡ F (~u(k) + x(~u(k+1) − ~u(k))); i.e. we have a

triplet a < z < b of points for which f(z) < f(a) and f(z) < f(b). Given

such a bracket, we search for a local minimizer between a and b by finding a

sequence of smaller brackets, each of which obeys the same relations and is a

strict subset of the previous bracket. This search involves two types of steps.

First, we may fit a parabola to the three points of the current bracket, and find

the minimum of the parabola, which is guaranteed to exist between a and b for

any bracket. The x-coordinate w of the parabola’s minimum is then used as a

point in a new bracket which throws away either the upper or lower bound of

the old bracket. For well-behaved functions, parabolic steps can converge very

rapidly, but in the worst case a method relying solely on such steps may not

converge at all. For reliability, Brent’s Method adds the option to take steps

based on golden-ratio sections. Of the two intervals (a, z) and (z, b) in the

75

bracket, whichever is larger is divided in two by a point w in such a way that

w is closer to z and the ratio of the two new segments adjoining w is the golden

mean,
√

5−1
2

. Using w and throwing away an extremum point to produce a new

smaller bracket, the golden-ratio section ensures an asymptotic geometric de-

crease in bracket size, thus ensuring that to converge from our initial bracket

of length 1 to a bracket smaller than a tolerance t, the computational cost is

O (− log(t)). The two types of steps are combined for the present algorithm in

a process illustrated in the simplified flow chart in Figure 4.9. For full details

on heuristics for step type selection and consideration of floating point error,

see [104]. In the numerical experiments in this work, even tight line search

tolerances can usually be met with less than a half dozen residual evaluations.

For more extreme nonlinearities, even this optimized substepping may

not be sufficient to obtain convergence within the maximum number of non-

linear iterations allowed by the user. In such cases, rather than spend time

on additional expensive Jacobian assemblies and linear solves, the nonlinear

solver terminates with a failure code which instructs a higher level in the solve

process to provide the solver with an easier problem. For a continuation-based

solver, the nonlinear parameter in the continuation scheme is restored to its

previous value and the parameter continuation increment is reduced, as de-

scribed in Section 5.8. For an adaptive time stepping algorithm, the time step

is attempted again with a reduced step size δt. In either case, the effect is to

provide the nonlinear solver with a problem whose solution (and therefore re-

gion of convergence) is closer to the initial iterate used by the nonlinear solver’s

search. In addition to improving reliability by making it possible to recover

from steps which the nonlinear solver cannot solve, this capability makes it

76

Input init ial i terate u,
ful l step vector x,

Brent search tolerance t,
tolerance scaling factor s

Let w be the new
point in a golden
section bisection

Is first residual reduction
test met?
|r | < |F(u)|

Reduce step size z:=z/2

Find the minimum w of a parabola f i t t ing points
(a,|F(u+ax)|), (z,|F(u+zx)|), (b,|F(u+bx)|)

Ask application code to construct
current nonl inear residual norm |r | = |F(u+zx)|

No

Yes

Set lower bracket a=0,
upper bracket b=1,

step size z=1/2

Is search tolerance
test met?
|z-a| < tc

FinishedYes

No

Will parabolic bisection
produce a good new bracket?

Yes

No

Ask application code to construct
nonl inear residual norm |F(u+wx)|

Is w a new minimum?
|F(u+wx) |< |F(u+zx) |

No

YesIf z>w, let lower bracket a:=w;
else let upper bracket b:=w

If z>w, let upper bracket b:=z;
else let lower bracket a:=z

Let step size z:=w

Figure 4.9: The basic steps in a Brent-based line search for optimal substep
length.

77

possible to use a solver whose parameters are set to give up even on otherwise

tractable problems. This strategy was found to improve overall computational

efficiency with some of the nonlinear equations in the simulations to follow. In

many cases, the solver was found to perform better when asked to solve mul-

tiple “easy” problems rather than a single equivalent “hard” problem. When

using an adaptive continuation or time stepping algorithm, these reductions

in step size are often temporary, and the algorithm can safely increase step

size again once the confounding solution behavior is passed; some examples of

this can be seen in the results in Section 7.14.

78

Chapter 5

Divergence-free Flow Problems

5.1 Introduction

Given the ability to construct finite element families supporting C1 con-

tinuous basis functions, one can derive from these a set of locally-supported C0

divergence-free vector-valued functions. The resulting function space spanned

by this set isH1 conforming, and each function ~u in the finite element space sat-

isfies the divergence-free condition ∇ · ~u = 0 in a pointwise sense. Divergence-

free finite element spaces are particularly useful in the study of incompressible

fluid flow [15,30] and electromagnetics [16, 131].

5.2 Divergence-free finite element spaces

Consider a scalar-valued finite element space Hh
f on domain Ω, with

basis functions φi which are locally supported, include the space of polynomials

Pk on each element, and are C1 continuous with bounded first derivatives. The

first two properties lead to the usual interpolation error results, and the third

property gives W 2,p conformity of the space.

First, use Hh
f to construct a streamfunction space Hh

s on Ω, whose

bases will be functions ~φi : Ω → R
3. If Ω ∈ R

2 for a planar flow problem, then

dim(Hh
s) = dim(Hh

f) and this construction is the trivial assignment ~φi ≡ φiêz.

If Ω ∈ R
3, then construct a space with dim(Hh

s) = 3 dim(Hh
f), and its basis

79

will be φiêj for each j in {x, y, z}. Finally, if Ω ∈ R
2 is spanned by cylindrical

unit vectors êr and êz for an axially symmetric flow problem, then construct

a Stokes streamfunction space with dim(Hh
s) = dim(Hh

f), and its basis will be

~φi ≡ φiêθ.

To obtain functions spanning a divergence-free function space Hh on

our finite element mesh, take the curl of the streamfunction bases:

~vi ≡ ∇× ~φi (5.2.1)

The C1 continuity of ~φi ensures that ~vi is well-defined and continuous

everywhere. Note that êz ⊥ Ω for the planar flow case and êθ ⊥ Ω for the

cylindrical flow case. Thus, for Ω ∈ R
2, elements of Hh(Ω) will be vector-

valued functions ~vi : Ω → R
2.

The vector calculus identity ∇ · ∇ × ~a = 0 ensures that ~v will be

divergence-free at points where Hh
f is C2 continuous. Because the components

of Hh
f are piecewise smooth, this is almost everywhere in Ω. The derivative-

based definition of divergence, ∇ · ~v ≡
∑

∂i~vi, may be undefined at points of

only C1 continuity (e.g. along subelement boundaries within a macroelement),

but the limit based definition of divergence, ∇ · ~v ≡ limdiam(V)→0

∫

V
~v · ~n dA,

will still be zero.

Note that although these functions span a divergence-free function

space, they are not a basis for that space. The kernel of the curl operator

is non-empty, and so in general the set of functions in its image will not be

linearly independent. To perform finite element calculations on a set of lo-

cally supported functions, these “spanning functions” can be used in the same

80

way that basis functions are traditionally used in weighted residual methods;

however the lack of linear independence raises difficulties when searching for

a unique numerical solution.

5.3 Solution Existence and Uniqueness

The question of solution existence and uniqueness for wide classes of in-

compressible flow problems is beyond the scope of this work. In fact, existence

and smoothness of solutions to the 3D incompressible Navier-Stokes problem

is one of the Clay Mathematics Institute “Millenium Problems” [88]. We can,

however, make use of existing results by posing a question more specific to the

divergence-free finite element method: if there exists a divergence-free weak

solution ~u to a boundary value problem, under what conditions does there

also exist a streamfunction ~φ which generates that solution? What additional

constraints should be applied to the problem to make ~φ unique?

In order to find convergent solutions to boundary problems posed on

divergence-free function spaces, it is not sufficient to be able to construct a

set of divergence-free functions on the function domain; it is also necessary to

ensure that the desired solution is the limit of a sequence of constructable func-

tions. It is true that the image of the curl operator will be a set of divergence

free functions, but an existence proof requires specifically that the particular

function we seek is in the image of the curl operator. In the terminology of

differential forms, every exact differential form is closed, but is every closed

2-form in the space of admissible solutions exact?

For a wide range of domains and boundary conditions, this is the

81

case. If a domain is contractible (homeomorphic to a point), then any smooth

divergence-free vector field on that domain is the curl of another vector field

(see, e.g. [136]). What does this mean for typical incompressible fluid flow

problems, which are often posed on non-contractible domains? If the fluid

domain is not contractible because of incompressible solid objects inside the

domain, then one can use the object velocities to extend the fluid velocity

function to the interior of the objects, use the contractability of the extended

domain to prove the existence of a streamfunction for the fluid/solid velocity

field, and finally restrict this streamfunction back to the original domain where

it is a streamfunction for the fluid velocity field alone.

It is tempting to say that in this fashion one can find a streamfunction

for any incompressible flow problem, but counterexamples exist. If a flow is

incompressible in a non-contractible domain but is compressible in a volume

enclosed by that domain, then it is possible that no streamfunction for the flow

exists. A simple example is planar radial flow through an annulus: the velocity

field ~u ≡ êr/r is divergence free in the region 1 < r < 2, but integrating the

tangential streamfunction derivative ∂ψ

∂~t
= ~u·~n < 0 around the r = 1 boundary

does not give a single-valued function. On such problems, finding a divergence-

free flow solution from a streamfunction formulation is more complex; see

e.g. [4].

Given a nonlinear functional J(~v) on a space Hh of divergence-free

functions for which streamfunctions exist, define the functional Js ≡ J ◦ (∇×)

whose range is the range of J but whose domain is the streamfunction space

Hh
s . Because (∇×) is a linear operator, whose kernel we will call K, ev-

82

ery minimizer ~u satisfying J(~u) ≤ J(~v) ∀~v corresponds to an affine space of

streamfunctions Ψ ≡
{

~ψ : ∇× ~ψ = ~u
}

, where Ψ = ~ψ +K for any ~ψ ∈ Ψ.

In two dimensions, dim(K) = 1, and one can easily find a unique ~ψ

by adding a penalty term which restricts the value of ~ψ(x) to be zero at

some point x ∈ Ω. Using streamfunction boundary conditions instead of

velocity boundary conditions accomplishes this restriction automatically, and

in practice many combinations of iterative solvers and preconditioners appear

to be stable even if the systems they solve are this slightly underdefined.

In three dimensions, however dim(K) is infinite, and in numerical ex-

periments dim(K∩Hh
s) is large enough to make some iterative solvers and pre-

conditioners fail. This kernel is difficult to constrain away analytically without

ruining the sparsity structure inherent in finite element system matrices. For

special classes of elements, topological arguments may allow the system to be

reduced [112] to a subspace on which the linear operator is positive definite,

but in general a linear solver which deals robustly with indefinite systems will

be most useful. Initial 3D results have been obtained with libMesh using

Jacobi preconditioning with a GMRES solver.

83

5.4 Incompressible Navier-Stokes Flow

For a constant density fluid, the incompressible Navier-Stokes equations

can be expressed in dimensionless form as:

∇ · ~u = 0 (5.4.1)

∂~u

∂t
+ Re(~u · ∇)~u = −∇P + ∇ ·

(ν

2

(

∇~u+ (∇~u)T
)

)

(5.4.2)

In a standard velocity-pressure mixed formulation [33,70,108], the cor-

responding variational saddle point problem is discretized on a compatible

pair of velocity and pressure spaces, then velocity test functions are used to

enforce the momentum equation weakly while pressure test functions enforce

the incompressibility condition weakly, e.g.

(∇ · ~u, q)Ω = 0 ∀q ∈ Hh
p (5.4.3)

(

∂~u

∂t
+ Re(~u · ∇)~u,~v

)

Ω

= (P,∇ · ~v)Ω −
(ν

2

(

∇~u+ (∇~u)T
)

, ~v
)

Ω
(5.4.4)

Pressure values must be solved for in the above system, and the velocity

solutions obtained are not pointwise divergence-free.

Instead, we can use the divergence-free space to satisfy the incompress-

ibility condition exactly, while at the same time eliminating the pressure vari-

able from the weak form of the momentum equation via the following identity:

∫

Ω

∇P · ~v dΩ =

∫

∂Ω

P~v · ~n dS −
∫

Ω

P∇ · ~v dΩ (5.4.5)

When using a divergence-free velocity space, the variational test func-

tions ~v will also be divergence free, and the last term will be zero. Pressure

may still appear in a boundary term, if it is specified as boundary data in a

84

pressure gradient driven flow. However, on boundaries where normal velocity

~u · ~n is specified, variation in normal velocity ~v · ~n will be zero. For prob-

lems with Dirichlet velocity boundary conditions, pressure will be completely

removed from the divergence-free formulation:

∫

Ω

∂~u

∂t
~v dΩ = −Re

∫

Ω

~v(~u · ∇)~u dΩ −
∫

Ω

ν(∇~u + (∇~u)T) : ∇~v dΩ

+

∫

∂Ω

ν(∇~u+ (∇~u)T)~v · ~n dS (5.4.6)

Other boundary conditions exist where pressure terms remain in bound-

ary integrals, but in these cases the pressure variable will be problem data,

not an unknown to be solved for.

5.5 Shear-dependent Viscosity Models

In the above formulations, we refer to the viscosity ν, which in New-

tonian fluid flows is a constant dependent only on fluid composition. Many

Non-Newtonian fluids, however, can be described by the same equations by

simply modifying ν to be a fluid-specific function of physical conditions like

temperature, solute concentration, or shear deformation [12–14,46, 47].

For the shear-thinning fluids we consider, flow behavior can be de-

scribed by a shear-dependent viscosity model, in which ν is solely a function

of the shear rate s ≡ 2
√

D(~u) : D(~u), where to simplify notation we define the

rate of deformation tensor of a velocity field to be the symmetric part of the

gradient of velocity:

D(~u) ≡ 1

2

(

∇~u+ (∇~u)T
)

(5.5.1)

85

It is convenient to reformulate the entire viscosity term in terms of the

rate of deformation tensor D(~u) rather than the asymmetric velocity gradient

∇~u:
∫

Ω

∂~u

∂t
~v dΩ = −Re

∫

Ω

~v(~u · ∇)~u dΩ −
∫

Ω

2ν(s)D(~u) : D(~v) dΩ

+

∫

∂Ω

2ν(s)D(~u)~v · ~n dS (5.5.2)

The identity (A+AT) : A = 1
2
(A+AT) : (A+AT) makes this equivalent.

Some examples of shear-dependent fluid viscosity models follow.

For Carreau fluids:

γ > 0 r ≥ 1

ν(s) = ν∞ +
ν0 − ν∞

(1 + (γs)2)(2−r)/2 (5.5.3)

For Extended Williamson fluids (including classical Williamson fluids,

for which r = 1):

γ > 0 1 ≤ r ≤ 2

ν(s) = ν∞ +
ν0 − ν∞

1 + (γs)2−r (5.5.4)

For Oldroyd fluids:

γ1 > 0 γ2 > 0

ν(s) = ν0
1 + (γ1s)

2

1 + (γ2s)2
(5.5.5)

For Powell-Eyring fluids:

γ > 0

ν(s) = ν∞ + (ν0 − ν∞)
sinh−1(γs)

γs
(5.5.6)

86

5.6 Penalty Boundary Conditions

We apply Dirichlet boundary conditions weakly by adding an addi-

tional weighted residual term to the finite element equations, penalizing solu-

tions which differ from the desired Dirichlet boundary value. Using a small

penalty coefficient ǫ gives solutions with similarly small error on Dirichlet

boundaries [34, 35].

Starting from a discrete nonlinear functional F expressing the boundary

value problem as Fi(~u) = 0, enforce ~u = ~uD on the boundary by adding the

penalty term

Gǫ
i(~u) ≡

1

ǫ

∫

∂Ω

(~u− ~uD) · ~vi dS (5.6.1)

For consistency in Newton and inexact Newton methods, the new non-

linear residual Fi + Gi must be differentiated instead of Fi to provide the

system Jacobian. The derivative of Gi is symmetric positive semidefinite:

∂Gǫ
i

∂uj
(~u) =

1

ǫ

∫

∂Ω

~vj · ~vi dS (5.6.2)

And thus symmetry and positive definiteness of the problem being

solved are unaffected by the use of penalty boundary conditions.

5.7 Successive Approximation

There are two sources of nonlinearity in flow systems modeled with

non-Newtonian viscosity. The Reynolds number, Re ≡ V L/ν0, is based on the

characteristic velocity, the domain length scale, and the kinematic viscosity.

For shear-thinning fluids, define Re based on the limiting viscosity ν0 at low

flow rates. The Reynolds number adds a nonlinear convection term to the

87

momentum equation for Re > 0. The viscosity variation, ν∞/ν0, is based on

kinematic viscosity ν∞ at high flow rates. For non-Newtonian fluids, ν∞ 6= ν0

and the viscosity variation adds nonlinearities to the momentum equation’s

velocity diffusion term.

Rapidly obtaining highly accurate solutions to these equations requires

a quadratically converging technique like Newton or (with appropriate linear

tolerances) Newton-Krylov. A slower convergence rate but a greater region of

convergence can often be obtained by simply lagging the nonlinear terms. For

the stationary problem, this gives

Re

∫

Ω

~v · (~u(k−1) · ∇)~u(k) dΩ +

∫

Ω

2ν(s(D(~u(k−1))))D(~u(k)) : D(~v) dΩ

−
∫

∂Ω

2ν(s(D(~u(k−1))))D(~u(k))~v = 0 (5.7.1)

As proven in [30], successive approximation of Stokes flow (Re = 0)

converges for any shear-thinning fluid with ν0 finite and ν∞ bounded above

zero from below.

Experimentally, in our current studies for the present flow classes, suc-

cessive approximation converges when given a sufficiently accurate starting

iterate (e.g. an approximate solution at a slightly lower Reynolds number),

but diverges from inaccurate starting iterates (e.g. zero flow or approximate

solutions at much lower Reynolds numbers).

5.8 Continuation

Lower ν∞/ν0 ratios appear to shrink the region of convergence, re-

quiring increasingly accurate initial guesses. Such initial conditions can be

88

obtained reliably through a continuation algorithm, which finds a solution at

Reynolds number Remax as follows:

1. Choose an initial Reynolds number Re0 = 0, an initial increment δRe0 =

100, and an initial iterate ~u0 = ~0.

2. Loop, beginning at i = 0:

3. Attempt to solve the modified flow problem at Rei, using ~ui as a starting

iterate.

4. If the nonlinear solver converged and Rei = Remax, we have the desired

solution and the algorithm is finished.

5. If the nonlinear solver converged but Rei < Remax, let Rei+1 be Rei +

δRei, set ~ui+1 to the new solution, and let δRei+1 be 2δRei.

6. If the nonlinear solver failed, let δRei+1 be 0.5δRei and let Rei+1 be

Rei − 0.5δRei

7. If Rei+1 > Remax, then let δRei+1 be Remax−Rei and set Rei+1 = Remax.

8. Repeat the loop for the next i.

This algorithm may handle bifurcations poorly, and is nearly certain to

fail at turning points, but neither were encountered in the moderate nonlin-

earities tested in the non-Newtonian flow experiments herein. For more highly

nonlinear applications, the above algorithm can be extended to more robust

arclength or pseudo-arclength forms.

89

In practice, only the solutions attempted at Remax need to be evalu-

ated to a tight error tolerance; even an inexact solution at a nearby Reynolds

number is usually sufficient to give a good starting iterate for successive ap-

proximation at a higher Reynolds number.

5.9 Newton-Krylov Methods

Because the method of successive approximation converges linearly even

near its limit point, it may take many iterations to find a PDE solution accu-

rate to several sigificant digits. Instead, when the constitutive relation leads

to an invertible Jacobian ∂Fi

∂~uj
, Newton-Krylov methods can be used to obtain

quadratic convergence in the nonlinear solver.

Expressing the velocity approximation as a linear sum of basis functions

~uh =

N
∑

i=0

ui~vi (5.9.1)

and expressing the weighted residuals as a vector element

Fj = Re

∫

Ω

~vj · (~u · ∇)~u dΩ +

∫

Ω

2ν(s(D(~u)))D(~u) : D(~vj) dΩ (5.9.2)

the Jacobian follows formally as

∂Fj
∂ui

(~u) = Re

∫

Ω

~vj · [(~u · ∇)~vi + (~vi · ∇)~u] dΩ

+

∫

Ω

2ν(s(D(~u)))D(~vi) : D(~vj) dΩ (5.9.3)

+

∫

Ω

4
∂ν

∂s
(s(D(~u)))

1

s(D(~u))
(D(~u) : D(~vi))(D(~u) : D(~vj)) dΩ

The full inexact Newton step to ~u(k) is found by using a Krylov subspace

90

solver to find an approximate solution to the linearized problem at ~u(k−1):

∂Fj
∂ui

(

~u(k−1)
)

·
(

u
(k−1)
i − u

(k)
i

)

= Fj
(

~u(k−1)
)

(5.9.4)

In practice, if ~u(k−1) is too far from the exact zero of F , this step may

not reduce the residual. To make convergence more likely without requiring

more expensive linear solves, if F (k) · F (k) ≥ F (k−1) · F (k−1) then a line search

in the direction of u(k) − u(k−1) is used to find a point with reduced residual,

as described in Section 4.4. With viscosity models for which F is twice differ-

entiable, a line search based on an exact linear solver is guaranteed to find a

reduced residual, and near the algebraic exact solution u the method is guar-

anteed to converge quadratically. In our current results, the Newton’s Method

solver converges much faster than successive approximation for Powell-Eyring

fluids, but (in the exact formulation above) it fails to converge for simulations

with Williamson fluids.

For Williamson fluids, the appearance of ∂ν
∂s

(s)1
s

in the Jacobian is a

source of difficulty: this ratio of viscosity derivative to strain is unbounded

as fluid strain goes to zero, and so the system residual F is not as smoothly

differentiable as it first appeared. Altering the Jacobian (by putting a cap

on the unbounded term, for example) does produce a system which converges

to the correct solution, but the convergence is now linear and has no obvious

benefits over successive approximation.

Even exact Newton’s method is not guaranteed to converge from start-

ing iterates too far from the exact solution of the nonlinear problem. To

ensure the Newton solver’s convergence in Navier-Stokes problems, we em-

ploy the same Reynold’s number continuation algorithm which was used with

91

successive approximation, finding approximate algebraic solutions at gradually

increasing Reynolds numbers to stay within the Newton region of convergence.

Again, only the solutions attempted at Remax need to be evaluated to

full tolerance; one or two Newton steps at lower Reynolds numbers is sufficient

to give a good starting iterate for the higher Reynolds number problems. A

useful strategy may be to begin with successive approximation for robustness

at low Reynolds numbers, then switch to a Newton-Krylov solver to obtain

the final high accuracy solution more efficiently.

5.10 Time-dependent flow

To solve the time-dependent flow system via a semidiscrete formula-

tion, finite differencing the time derivative term gives a spatial boundary value

problem at each timestep. Standard “theta methods” then advance a known

solution ~u(n) through a timestep to the next solution ~u(n+1).

By using a first order finite difference evaluation of ∂~u
∂t

, and evaluating

the time derivative at an arbitrary fraction θ of the step between tn and tn+1,

we can write down a single theta method which includes Forward Euler (θ =

0), Backward Euler (θ = 1), and Crank-Nicolson (θ = 1
2
). Defining a new

unknown δ~u ≡ ~u(n+1) − ~u(n) gives:

∫

Ω

δ~u

δt
~v dΩ = −Re

∫

Ω

~v · ((~u(n) + θδ~u) · ∇)(~u(n) + θδ~u) dΩ

−
∫

Ω

2ν(s(~u(n) + θδ~u))D(~u(n) + θδ~u) : D(~v) dΩ(5.10.1)

+

∫

∂Ω

2ν(s(~u(n) + θδ~u))D(~u(n) + θδ~u)~v · ~n dS

92

Forward Euler With θ = 0, the only term to involve the unknown δ~u is the

mass matrix. Discretizing this equation with divergence-free elements gives a

mass matrix which in 2D resembles a Laplacian matrix on the streamfunction,

since

∫

Ω

δ~u · ~v dΩ ≡
∫

Ω

∇δψ · ∇φ dΩ (5.10.2)

To make this matrix non-singular, some boundary condition must be added.

At the least, in two dimensions one streamfunction node must be “pinned” to

constrain the constant non-zero streamfunction solution mode and force δ~u to

be unique.

One advantage of Forward Euler is that the mass matrix is time-

constant, and so it can be factored (or an expensive preconditioner con-

structed) only at the beginning of a simulation and after any remeshing, then

those factorizations or preconditioners can be reused repeatedly. The nonlinear

terms are evaluated explicitly, so no nonlinear solution method is required.

The disadvantages of Forward Euler solves are quickly made evident

by experimentation. Even for Stokes flow with Newtonian fluids, stability de-

pends strongly on δt. Unless δt < O (h2), high frequency errors are amplified

and the solution diverges. For Navier-Stokes flow or for flow of non-Newtonian

fluids, solution stability also depends on how strong the equation nonlinear-

ities are. At even moderate Reynolds numbers (Re = 200), Forward Euler

streamfunction solutions appear to diverge on any mesh regardless of time

step size.

93

Crank-Nicolson With θ = 1
2
, the timestepping scheme is O(δt2) accurate,

but requires a nonlinear solution for δ~u at each timestep. The nonlinear system

resembles the nonlinear steady state problem, but because the steady state

nonlinear functional F is weighted and added to the mass matrix M , the

Jacobian and residual of the system as a whole are adjusted accordingly:

Mδ~u− δtF (~u(n) + θδ~u) = 0 (5.10.3)
(

M − θδt
∂F

∂~u

(

~u(n)
)

)

(

δ~u(k) − δ~u(k+1)
)

= Mδ~u(k) − δtF (~u(n) + θδ~u(k))

In practice, the advantages of Crank-Nicolson can be obtained without

the expense of a fully convergent Newton solve by using an incomplete Newton

method: a single Newton step from an initial guess of δ~u = 0 appears to be suf-

ficient to give quadratic time accuracy and unconditional stability. Additional

accuracy could be achieved using a predictor-corrector method: the result of

a cheap Forward Euler step can serve as the initial guess in the implicit solve,

simultaneously reducing the error in an incomplete Newton method with a

fixed number of steps or reducing the number of steps required for a Newton

solve with a fixed nonlinear tolerance.

5.11 Unsteady Flow and Transport

Among the motivations for finding strongly divergence-free velocity

fields is their suitability as advection terms in transport equations. Let us

consider the scalar single-component transport equation,

∂c

∂t
+ ~u · ∇c = ∇ · (D∇c) (5.11.1)

94

Taking weighted residuals with a test function v and integrating by

parts gives the weak form of the equation,

∫

Ω

∂c

∂t
v dΩ =

∫

Ω

D∆cv dΩ −
∫

Ω

~u · ∇c v dΩ (5.11.2)

(5.11.3)

or
(

∂c

∂t
, v

)

Ω

= −(D∇c,∇v)Ω + (D∇c · ~n, v)∂Ω − (~u · ∇c, v)Ω (5.11.4)

For problems with Neumann-only boundary condtions, the constant

function v = 1 is contained in the space of test functions. With this v,

∂

∂t

∫

Ω

c dΩ =

∫

∂Ω

D∇c · ~n dS −
∫

Ω

~u · ∇c dΩ (5.11.5)

=

∫

∂Ω

D∇c · ~n dS +

∫

Ω

c∇ · ~u dΩ −
∫

∂Ω

c~u · ~n dS (5.11.6)

In the exact solution to an incompressible flow and transport problem,

∇ · ~u = 0, and so the rate of change of global concentration ∂
∂t

∫

Ω
c dΩ will be

exactly balanced by the two boundary terms, which correspond to diffusive

and convective inflow respectively. For this global conservation to hold true

in a numerical approximation, it is sufficient that the advection velocity field

~u satisfies (c,∇ · ~u)Ω = 0 for any value c in the concentration function space.

5.12 Divergence-free Flow Example Results

As an interesting divergence-free flow test, we simulate shear-thinning

Navier-Stokes flow in the 2D lid-driven cavity. Incompressible flow is modeled

in a square domain, enforcing zero velocity on three sides and a constant lat-

eral velocity along the top. In Figure 5.2 and Figure 5.3 we see typical results

95

for Newtonian flows, at Reynolds numbers of 400 and 1000 respectively, com-

puted on uniform 32x32 meshes of squares divided into HCT 3-split triangles.

The limitations of the 2048 element uniform meshes become apparent in the

vorticity plots, in which the solution and postprocessing projection have led

to distinct numerical oscillations.

~u = (−1, 0)

~u = 0 ~u = 0

Figure 5.1: Domain and boundary conditions for lid-driven cavity flow

Figure 5.2: Steady-state streamfunction and vorticity plots for Newtonian lid-
driven cavity flow at Reynolds number 400

Because the velocity boundary conditions are discontinuous at the cor-

ners, the first derivative of the streamfunction is also discontinuous and its

96

Figure 5.3: Steady-state streamfunction and vorticity plots for Newtonian lid-
driven cavity flow at Reynolds number 1000

second derivatives are singular. As r → 0,

ψ(r, θ) ∼ r

π2 − 4

(

−π2 sin(θ) + 2πθ sin(θ) + 4θ cos(θ)
)

(5.12.1)

ω(r, θ) ∼ 1

(π2 − 4)r
(4π cos(θ) − 8 sin(θ)) (5.12.2)

The error encountered in trying to resolve this singularity on a coarse

mesh can lead to noticeable pollution well into the interior of the domain.

Over-refinement can limit the problem, but we can find such irregular solutions

more efficiently by using adaptive h refinement to grade the mesh into the

points of reduced regularity. Using the Laplacian jump error estimator on

the streamfunction, adaptive refinement focuses in on the singularities but

still tracks the trail of vorticity that has been convected into the interior. A

vorticity solution on an example adapted mesh is shown in Figure 5.4.

The result of this process is that the sequence of adapted meshes recov-

ers some of the convergence rate which has been lost to the uniform refinement

sequence, as shown in Figure 5.5.

97

Figure 5.4: Steady-state vorticity plot for Extended Williamson lid-driven
cavity flow at Reynolds number 500 and viscosity ratio 0.1.

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of DoFs

E
rr

or
 F

ra
ct

io
n

Error Convergence, Lid−Driven Cavity

Uniform L2 error
Adaptive L2 error
Uniform H1 error
Adaptive H1 error

Figure 5.5: Error convergence, plotted as L2 and H1 error norms against
number of unconstrained degrees of freedom, for both uniformly and adaptively
refined meshes.

98

5.13 Transport Results

Using the lid-driven cavity flow results as an advection velocity, we can

demonstrate the mass conservation properties for a decoupled species transport

problem.

This system corresponds to flow of a Newtonian fluid at Reynolds num-

ber ℜ = 500, and transport of a species with diffusivity D = .01 Backward

Euler integration is used with timesteps of fixed length δt = 10−3. The initial

concentration varies linearly from 0 (plotted as blue) on the left of the domain

to 1 (plotted as red) on the right.

Figure 5.6: Concentration plots for Newtonian lid-driven cavity flow at
Reynolds number 500, at nondimensionalized times t = 5 and t = 25

99

Chapter 6

Surface Tension Driven Flow of Thin Films

6.1 Introduction

Consider the flow of a layer of liquid, constrained below by a heated

flat solid surface and bounded above by gas underneath a cooled flat plate.

In the general case, flow in the liquid region interior is modeled with the 3-D

Navier-Stokes equations for velocity and pressure, coupled to an advection-

diffusion equation for temperature, with appropriate boundary conditions. For

thin liquid layers, however, the three dimensional problem begins to exhibit

essentially two-dimensional behavior, as the potential energy associated with

surface tension begins to exceed the gravitational, inertial, and thermal energy

of the fluid interior. For extremely thin fluid layers, surface tension effects

dominate the flow, and a fourth-order two dimensional PDE can correctly

model those effects. The goal of this part of the research is to develop new

formulations for exploring the behavior of this reduced fourth-order model.

Although there is a stationary flow solution to this heat transfer prob-

lem, the stability of that solution depends on the parameters of the particular

system.

The most familiar instability in fluids heated from below is buoyancy

driven convection in the fluid. The effect of buoyancy depends on the nondi-

mensional Raleigh number, Ra ≡ αTgδTd
3/νk, which depends on the fluid

100

thermal expansion coefficient αT , dynamic viscosity ν, thermal conductivity

k, and average depth d, as well as gravity g and the applied temperature dif-

ference δT ≡ Tbottom − Ttop. Above a critical Raleigh number, warmer fluid at

the bottom of a convection cell expands and becomes less dense, is buoyed up,

cools at the fluid surface away from the heated plate, then sinks again at the

sides of the cell. The strength of this effect decreases as the cube of d, and so

it is less important than surface tension effects in sufficiently thin layers.

For thinner liquid layers, convection cells are still observed to arise

from thermocapillary effects on the surface [111]. The development of these

Bénard-Marangoni cells depends on the Marangoni number, M ≡ σT δTd/ρνk,

which nondimensionalizes the derivative of surface tension with respect to

temprature, σT , in terms of parameters described above as well as on liquid

density ρ. Above a critical Marangoni number, reduced temperature at the

surface leads to increased surface tension σ in cool spots, which draw liquid

horizontally. The displaced liquid is forced down to the heated plate and drawn

up again in hot spots. The Marangoni number also decreases with decreasing

d, but only linearly.

In extremely thin heated liquid layers, the primary instability observed

is a deformation in the liquid surface, also driven by thermocapillary effects

but with a much longer wavelength [128]. Onset of this instability is deter-

mined primarily by the inverse dynamic Bond number, D ≡ σT δT/ρgd
2. Cool

spots on the surface draw in liquid horizontally, and the liquid layer thick-

ness increases. The increase in surface height causes the surface to be more

insulated from the heated plate below and less insulated from the cool plate

101

above, cooling the liquid. and adding positive feedback to the system. For

sufficiently large D, this destabilizing effect can exceed the stabilizing effect of

gravity, causing long-wavelength perturbations in the liquid height to grow.

It is this final flow regime that can be modeled by the fourth-order

thermocapillary flow equation. We will demonstrate the use of C1 finite ele-

ments to construct conforming solutions to the Galerkin approximation of this

model.

It is possible to add additional physical stability to the system by in-

troducing a surfactant layer to the liquid surface. Areas of increased surface

tension draw in surrounding fluid horizontally, and the incoming convection

of surfactant increases the local surfactant concentration, lowering the surface

tension back toward equilibrium. For related experiments see [98]. The surfac-

tant transport equation can be simulated fully coupled with the flow equation

with a similar fourth-order model.

6.2 Flow and transport equations

With slight modification, we follow the derivation used in [133] and

[129]. The derivation of the simplified fourth-order model begins from the

incompressible Navier-Stokes equations for Newtonian fluid flow, coupled to

transport equations for temperature and surfactant. The flow velocity ~u, pres-

sure P , and temperature T evolve in time; we normalize these variables based

on the average liquid thickness d, density ρ, thermal diffusivity κ ≡ k
ρcp

, and

viscosity ν as follows: length is scaled by layer depth d, time by d2/κ, velocity

by κ/d, pressure by ρνκ/d2, and temperature by δT . The resulting equations

102

are

∂~u

∂t
+ (~u · ∇) ~u = Pr (−∇P + ∆~u− Gêz) (6.2.1)

∇ · ~u = 0 (6.2.2)

∂T

∂t
+ (~u · ∇)T = ∆T (6.2.3)

where Pr ≡ ν/κ is the Prandtl number, and G ≡ gd3

νκ
is the Galileo number.

The non-dimensionalized height u of the liquid layer evolves with the

flow. Because u is a function only of x and y, its gradient is a vector in the

x− y plane. Defining the two dimensional gradient ∇⊥ ≡ êx
∂
∂x

+ êy
∂
∂y

, we can

say that ∇⊥u = ∇u. Defining the vertical velocity component w ≡ ~u · êz,
∂u

∂t
+ ~u · ∇u = w (6.2.4)

At the bottom flat plate, the temperature is held constant (and set

here to 0 in the scaled system for convenience), and the no-slip, no-penetration

velocity conditions apply. That is,

T (z = 0) = 0 (6.2.5)

~u(z = 0) = ~0 (6.2.6)

Define the standard nondimensional Biot number as H ≡ kgd

kdg
, based on

the average thicknesses d, dg and thermal conductivities k, kg in the liquid and

gas layers, the temperature on the liquid surface can be expressed as

T (z = 1 + dg/d) = −1 + H

H
(6.2.7)

A surface tension boundary condition also applies on the liquid surface.

Let the subscripts s and n denote directions of vectors within and perpendic-

ular to the surface plane respectively, and let R1 and R1 be the local radii

103

of curvature of the surface. Defining a dimensionless surface tension S ≡ σd
ρνκ

(the inverse of the nondimensional Crispation number), the associated bound-

ary condition on the free surface is

∇sS = ∇s~un + ∂~n~us (6.2.8)

P − S

(

1

R1
+

1

R2

)

= 2∂~n~un (6.2.9)

To derive the two-dimensional thin film equations, first expand the

solution variables in terms of the wave number q = 2πd/L, as shown in [48],

and neglect higher order terms. The lowest order equations in the interior, as

given by [133], are

∂2~u⊥
∂z2

= ∇⊥P (6.2.10)

∂P

∂z
= −G (6.2.11)

∂2T

∂z2
= 0 (6.2.12)

∇⊥ · ~u⊥ +
∂w

∂z
= 0 (6.2.13)

On the liquid surface at z = h, and again using the notation ∇ ≡ ∇⊥

to refer to the gradient of two-dimensional functions in the x− y plane,

∂u

∂t
+ ~u⊥ · ∇u = w (6.2.14)

∇u · ∇S −∇u · ∂~u⊥
∂z

= 0 (6.2.15)
(

∇u×∇S −∇u× ∂~u⊥
∂z

)

· êz = 0 (6.2.16)

P + S∆u = 0 (6.2.17)

Equation (6.2.12) implies that the temperature can be modeled as a

pure conduction problem. Solving this problem with a constant heat flux k ∂T
∂z

104

at the liquid/gas interface gives a surface temperature in terms of the two-layer

Biot number F ≡ d/dg−H
1+H

.

T =
−u

1 + F − Fu
(6.2.18)

Integrating equation (6.2.11) in z gives

P = −S∆u+ G(u− z) (6.2.19)

and substituting this into (6.2.10),

∂2~u⊥
∂z2

= −∇S∆u+ G∇u (6.2.20)

Next, integrating with respect to z twice, applying boundary conditions

from (6.2.6) and (6.2.15),

~u⊥ = (−∇ (S∆u) + G∇u) z
2

2
+ (u∇S∆u− uG∇u+ ∇S) z (6.2.21)

Integrating (6.2.13) vertically from the no-slip boundary condition at

z = 0,

w = (−∆ (S∆u) + G∆u)
z3

6
+ (∇ · (u∇S∆u) − G∇ · (u∇u) + ∆S) (6.2.22)

We can then solve for ∂u
∂t

in terms of u and S:

∂u

∂t
= w(u) − ~u⊥(u) · ∇u (6.2.23)

= w(u) −∇ · (u~u⊥(u)) + ∇ · ~u⊥(u) (6.2.24)

= w(u) −∇ · (u~u⊥(u)) − ∂w

∂z

∣

∣

∣

∣

z=h

(6.2.25)

= ∇ ·
(

u3

3
∇ (S∆u) − u2

2
∇S +

Gu3

3
∇u
)

(6.2.26)

105

Let cs denote the concentration of a monolayer surfactant on the liquid

surface. The transport of this surfactant is modeled by an advection equation.

Let us assume that the surface is relatively flat to justify the simplification

∇⊥ ≈ ∇s. Because surfactant diffusion based on surface tension effects will

greatly exceed surfactant molecular diffusivity, we neglect the latter to obtain:

∂cs
∂t

+ ∇ · (cs~u⊥) = 0 (6.2.27)

Using equation (6.2.21) for ~u⊥ gives an evolution equation analogous

to (6.2.26):

∂cs
∂t

+ ∇ ·
(

cs
u2

2
(−∇ (S∆u) + G∇u) +

(

u2∇S∆u− u2G∇u+ u∇S
)

)

= 0

(6.2.28)

To complete the model, the nondimensionalized surface tension S is

described in terms of the film thickness u and surfactant concentration cs.

In the present work as in [134], we use a linear “dilute surfactant model”

to describe the dependence of surface tension on surfactant cs, and we also

assume a linear dependence of surface tension on temperature. In terms of the

nondimensionalized surface tension S, this model is:

S = S0 − MδT − αES0cs (6.2.29)

Where α and E are nondimensional coefficients in the nonlinear model

for S(cs), and S0 is the unperturbed surface tension at T = 0 and cs = 0.

After substituting in our solution for T (u), this constitutive model en-

ables the calculation of surface tension and surface tension gradients in terms

106

of only the height, surfactant concentration, and known material constants:

S = S0 +
Mu

1 + F − Fu
− αES0cs (6.2.30)

∇S =
M(1 + F)

(1 + F − Fu)2
∇u− αES0∇cs (6.2.31)

Substituting these models for S and ∇S into (6.2.26) and (6.2.28), the

resulting system of thin film flow equations becomes:

∂u

∂t
= ∇ ·

(

u3

3
∇
((

S0 +
Mu

1 + F − Fu
− αES0cs

)

∆u

)

− (6.2.32)

u2

2

M(1 + F)

(1 + F − Fu)2
∇u+

u2

2
∇cs +

Gu3

3
∇u
)

∂cs
∂t

= ∇ ·
((

u2

2
∇
((

S0 +
Mu

1 + F − Fu
− αES0cs

)

∆u

)

+ (6.2.33)

M(1 + F)u

(1 + F − Fu)2
∇u− αES0u∇cs

)

cs

)

Finally, we rescale the domain. Recalling the inverse dynamic Bond

number D ≡ M/G, x and y lengths are rescaled by L/d and time by 3L2

GD2 , to

obtain the thin film flow equations:

∂u

∂t
= ∇ ·

(

u3

B
∇
((

1 +
Dud2

(1 + F − Fu)L2
−Ds

d2

L2
cs

)

∆u

)

−

3u2

2

D(1 + F)

(1 + F − Fu)2
∇u+

u2

2
∇cs +

Gu3

3
∇u
)

(6.2.34)

∂cs
∂t

= ∇ ·
((

3u2

2B
∇
((

1 +
Dud2

(1 + F − Fu)L2
−Ds

d2

L2
cs

)

∆u

)

+

D(1 + F)u

(1 + F − Fu)2
∇u−Dsu∇cs

)

cs

)

(6.2.35)

Where Ds ≡ αEσ0

ρgd2
is the dimensionless parameter corresponding to the

ratio of gravitational and surfactant forces.

107

Dilute surfactant model PDE In the analysis of double-layer thin film

flow by Van Hook et. al. [129], as well as in its extension to surfactant problems

by Wang and Carey [133], some terms in the derived equations are simplified

by the assumption S ≈ S0. Above, we avoid this assumption, but we can see

that the extra terms in this new derivation can be safely neglected based on the

behavior of the nondimensionalized equations for d/L << 1. The numerical

experiments here use these final equations, where terms with d2/L2 have been

dropped:

∂u

∂t
= ∇ ·

((

u3 − 3D(1 + F)u2

2(1 + F − Fu)2

)

∇u− (6.2.36)

u3

B
∇∆u+

3Dsu
2

2
∇cs

)

∂cs
∂t

= ∇ ·
((

u2

2
− 3D(1 + F)u

(1 + F − Fu)2

)

cs∇u− (6.2.37)

csu
2

2B
∇∆u+ 3Dscsu∇cs

)

6.3 Galerkin formulation

Previous finite element simulations of thin film flow [10,135] have em-

ployed a mixed method to handle the fourth-order terms in the governing

differential equations; introducing a secondary variable which includes ∆u in

its definition to break the fourth-order equation into a pair of coupled second

order equations.

Here, we instead work directly in H2 using C1 elements to solve the

fourth-order form. Taking the weighted residual of each PDE (against a test

function v for the evolution equation of height u and a test function w for the

evolution equation of surfactant cs), then integrating each second order term

108

by parts once and each fourth-order term twice,

(

∂u

∂t
, v

)

=

((

3D(1 + F)u2

2(1 + F − Fu)2
− u3

)

∇u− 3Dsu
2

2
∇cs,∇v

)

Ω

+

((

u3 − 3D(1 + F)u2

2(1 + F − Fu)2

)

∂~nu+
3Dsu

2

2
∂~ncs, v

)

∂Ω

−
(

u3

B
∆u,∆v

)

Ω

−
(

3u2

B
∆u∇u,∇v

)

Ω

+

(

u3

B
∂~n∆u, v

)

∂Ω

−
(

u3

B
∆u, ∂~nv

)

∂Ω

(6.3.1)

(

∂cs
∂t
, w

)

=

((

3D(1 + F)u

(1 + F − Fu)2
− u2

2

)

cs∇u− 3Dscsu∇cs,∇w
)

Ω

+

((

u2

2
− 3D(1 + F)u

(1 + F − Fu)2

)

cs∂~nu+ 3Dscsu∂~ncs, w

)

∂Ω

−
(

csu
2

2B
∆u,∆w

)

Ω

−
(

∆u
2csu∇u+ u2∇cs

2B
,∇w

)

Ω

+

(

csu
2

2B
∂~n∆u, w

)

∂Ω

−
(

csu
2

2B
∆u, ∂~nw

)

∂Ω

(6.3.2)

The nonlinear terms in equations (6.3.1) and (6.3.2) merit further com-

ment. First, because the fourth-order terms each include a nonlinear coefficient

“outside” three derivatives, integrating them by parts twice requires differen-

tiating that coefficient, which creates an unusual additional interior integral

term in each equation. Secondly, because of the appearance of (1+F−Fu)2 in

the denominator of several terms, the Galerkin functionals are not bounded on

any Hilbert space. Solutions with nondimensionalized height u(~x) > (1+F)/F

are part of any linear function space, but are physically impossible in the exper-

imental problem because of the barrier of the upper plate, and are precluded in

the Galerkin functionals because the coefficients which become singular. The

Galerkin functionals are only defined for u in the subset of W 2,5 constrained

by u < (1 + F)/F − ε.

109

6.4 Thin Film Flow Results

To demonstrate the coupling of surfactant concentration to thin film

depth, this simulation adds a round droplet of surfactant to the surface of a

film of initially uniform depth. The spreading of the surfactant layer entrains

fluid with it away from the initial droplet location in an expanding wavefront.

Figure 6.1: Initial surfactant concentration, and a thin film flow solution at
t = 0.2.

Figure 6.2: Film fluid depth solutions at t = 0.1 and t = 0.2.

110

Chapter 7

Cahn-Hilliard Phase Separation

7.1 Introduction

The Cahn-Hilliard treatment of interfacial free energy [26] has been

extended to describe the evolution of material composition in many mix-

tures with diffuse interfaces, from microscale annealing to nanoscale void self-

assembly [79, 119, 126,144]. By adding additional variables for concentrations

of additional components [60] and/or material phase [83], systems of Cahn-

Hilliard like equations can be used to describe evolution of more complicated

mixtures with known free energy functions. Even nominally immiscible fluid

mixtures can be modeled by coupling the Cahn-Hilliard and Navier-Stokes

equations [91]. In the sharp interface limit, the Cahn-Hilliard contributions to

such a system are equivalent to classical surface tension models, but without

the front tracking [145] required by other methods.

7.2 Cahn-Hilliard Equation

In a Cahn-Hilliard system, the material state is described by a continu-

ous variable, rather than a discontinuous partition of the domain into regions

of differing state. In the simplest binary systems [26], the material state is

described by the the concentration c of one of the two components. The lo-

cal free energy density f in a material is assumed to be a function of both c

111

and ∇c. For an isotropic material, the composition based free energy density

will be a function of c and ||∇c||2 alone. The free energy is generally divided

into two parts, f = f0 + fγ . The “configurational free energy” f0 is present

in mixtures at a homogenous concentration and the “surface free energy” or

“gradient energy” fγ is positive at material interfaces where a concentration

gradient exists. The isotropic gradient energy term is described by

fγ(∇c) ≡
ǫ2c
2
∇c · ∇c (7.2.1)

where the parameter ǫc scales with the interfacial layer thickness.

The configurational free energy depends on the chemistry of a particular

physical problem. The initial work by Cahn and Hilliard [26], as well as

most of the subsequent material science literature, uses what we will call the

“chemical” free energy function

f0c(c) ≡ NkT (c ln (c) + (1 − c) ln (1 − c)) +Nωc(1 − c) (7.2.2)

for mixtures involving small molecules. Here N is the molecular density, k is

Boltzmann’s constant, and ω is a scalar parameter related to fluid miscibility.

Below a critical temperature T < ω
2k

, this free energy function is a double

well which will lead to phase separation. In this formulation the phase c is

a concentration with values varying from 0 to 1. This function is also called

the “Flory-Huggins” free energy, due to its original derivation by Huggins [71]

and Flory [63] in studies of polymer solutions.

In much of the mathematical analysis literature (see e.g. [56], a sim-

plified function is often used to investigate the same qualitative behavior, by

giving an equation that avoids the restricted range of and the singularities in

112

the chemical free energy definition. This “mathematical“ free energy function

is the quartic double well,

f0m(c) ≡ 1

4

(

c2 − 1
)2

(7.2.3)

In this mathematical free energy function, the phase c is the normalized

difference in the two concentrations in a binary mixture, and so c is expected

to vary in the range from −1 to 1. In fact f0m is a simplified approximation,

and depending on other parameters in the Cahn-Hilliard equation the phase c

can take unphysical values outside of that range.

We relate the time evolution of c to the concentration flux ~q, ensuring

that concentration is a conserved variable.

∂c

∂t
= −∇ · ~q (7.2.4)

Given the defined free energy f0 + fγ , a thermodynamic analysis pro-

vides a constitutive relation for the concentration flux. The flux ~q is propor-

tional to the free energy gradient

~q = −Mc∇
df

dc
(7.2.5)

= −Mc∇
(

f ′
0(c) + f ′

γ(c)
)

(7.2.6)

where the mobility Mc may be concentration dependent. Mc must be

a positive semidefinite tensor-valued function of c, and is typically assumed

to take non-negative scalar values. Of interest when using the chemical free

energy function are the constant mobility function Mc = M and the “degener-

ate” mobility function Mc = Mc(1 − c). Degenerate mobility functions are of

113

special interest in the analysis of the Cahn-Hilliard equation with the mathe-

matical free energy function, where they guarantee strict bounds on c [54].

When using the mathematical free energy function f0m, the derivative

f ′
0m is also a simple well-behaved polynomial

f ′
0m = c3 − c (7.2.7)

However, for the chemical free energy function f0c the derivative f ′
0c is

f ′
0c = NkT (ln (c) − ln (1 − c)) +Nω(1 − 2c) (7.2.8)

and becomes singular at the concentration limits c = 0 and c = 1.

Substituting ~q into the conservation equation completes the construc-

tion of the basic normalized Cahn-Hilliard equation:

∂c

∂t
= ∇ ·Mc∇

(

f ′
0(c) − ǫ2c∆c

)

(7.2.9)

7.3 Lyapunov Energy Functional

The Cahn-Hilliard equations can be interpreted in terms of the time

evolution of the free energy functional

J(c) ≡
∫

Ω

f(c) dΩ (7.3.1)

=

∫

Ω

[

f0(c) +
ǫ2c
2
∇c · ∇c

]

dΩ (7.3.2)

The time derivative of this functional

∂J(c)

∂t
=

∫

Ω

[

f ′
0(c)

∂c

∂t
+ ǫ2c∇c · ∇

∂c

∂t

]

dΩ (7.3.3)

114

can be integrated by parts, giving L2 inner products over the domain and it’s

boundary

∂J(c)

∂t
=

(

f ′
0(c) − ǫ2c∆c,

∂c

∂t

)

Ω

+

(

ǫ2c∂~nc,
∂c

∂t

)

∂Ω

(7.3.4)

If c satisfies the symmetry boundary condition ∂~nc = 0 on ∂Ω, the

boundary term is zero; if c satisfies periodic boundary conditions on ∂Ω then

boundary terms from matched boundaries cancel. In either case,

∂J(c)

∂t
=

(

f ′
0(c) − ǫ2c∆c,

∂c

∂t

)

Ω

(7.3.5)

This time derivative is non-positive if c satisfies the Cahn-Hilliard equa-

tion on Ω along with its natural boundary condition (Mc∇ (f ′
0(c) − ǫ2c∆c))·~n =

0 on ∂Ω.

∂J(c)

∂t
=

(

f ′
0(c) − ǫ2c∆c,∇ ·Mc∇

(

f ′
0(c) − ǫ2c∆c

))

(7.3.6)

= −
(

∇
(

f ′
0(c) − ǫ2c∆c

)

,Mc∇
(

f ′
0(c) − ǫ2c∆c

))

Ω
(7.3.7)

The final inner product on the right hand side will always be non-

negative so long as the mobility Mc(c) is either a strictly non-negative scalar

or a strictly positive semidefinite tensor for all c.

In both the mathematical and chemical free energy formulations, f0(c)

is bounded from below by some fmin. Also, ∇c · ∇c is non-negative; therefore

J(c) is bounded from below in H1(Ω).

J(c) is non-increasing, bounded from below, C1 on the set of admissible

c, and radially unbounded, i.e. it fulfills the definition of a “smooth weak

Lyapunov function in the large” for the Cahn-Hillard problem.

115

7.4 Galerkin Finite Element Approximation

Taking a weighted residual of the strong equation (7.2.9), integrate the

second order terms by parts once and integrate the fourth-order term by parts

twice. This yields

(
∂c

∂t
, φ)Ω ≡

F (c, φ) = − (Mc∇f ′
0(c),∇φ)Ω − ǫ2c

(

∆c,∇ ·MT
c ∇φ

)

Ω
(7.4.1)

+
((

Mc∇
(

f ′
0(c) − ǫ2c∆c

))

· ~n, φ
)

∂Ω
+ ǫ2c

(

∆c,MT
c ∇φ · ~n

)

∂Ω

and is defined on W 2,2(Ω)∩W 1,4(Ω) in the simplest case; in general the

domain of the functional depends on Mc and f0(c).

As boundary conditions, we use symmetry conditions to approximate

an infinite domain. To enforce symmetry, it is sufficient to require that
(

MT
c ∇c

)

·~n = 0 and (Mc∇(f ′
0(c) − ǫ2c∆c)) ·~n = 0 on ∂Ω. The latter condition

may be enforced weakly as a natural boundary condition by substituting 0

into the corresponding boundary integral in F . Although constraints on ∂~nc

are familiar as natural boundary conditions in second order problems, in this

fourth-order problem constraints on the normal flux are essential boundary

conditions.

The homogeneous essential boundary condition on first derivatives may

be conveniently enforced approximately via a penalty method, by adding the

term

1

ǫ

(

MT
c ∇c · ~n,MT

c ∇φ · ~n
)

(7.4.2)

to the residual functional using some ǫ ≪ 1. Comparing this term with the

second boundary integral in (7.4.1), it can be seen that the penalty method

116

is equivalent to enforcing the mixed boundary condition MT
c ∇φ · ~n = ǫǫ2c∆c.

As ǫ → 0, solutions obtained with this boundary condition should approach

solutions obtained with the exact boundary condition.

In the past, approximation of the Cahn-Hilliard equation using finite

element methods has often focused on mixed methods, introducing a separate

scalar variable for ∆c or for f ′
0(c)− ǫ2c∆c, then solving the resulting system of

equations on a C0 finite element space. See e.g. [55, 80]. Other finite element

approaches in the literature include semi-discontinuous and non-conforming

methods [11, 53, 137].

By using C1 continuous finite element spaces for our approximation

space Hh, we can find conforming approximate solutions to the fourth-order

Cahn-Hilliard equation without introducing the additional variable and de-

grees of freedom required by a mixed system, using spaces with fewer degrees

of freedom and equations with fewer terms to integrate than would be re-

quired by a semi-discontinuous method. In this work, equation (7.4.1) is en-

forced directly for all test functions φ ∈ Hh. This method has previously been

used with a slightly different weak form on the one dimensional Cahn-Hilliard

problem [52]; the present work extends the method to two and three dimen-

sional problems, on adaptive meshes of tensor product spline elements or HCT

macroelements.

117

7.5 Lyapunov Energy Functional and Spatial Discretiza-
tion

When approximating partial differential equations such as the Cahn-

Hilliard equation, we often desire that solutions to the discretized formulation

retain the conservation and dissipation properties of the original equation.

Mass conservation, which may require special attention with other nu-

merical methods [41], is a simple property to verify with our Galerkin scheme.

Because the constant function v = 1 is contained within our finite element

function space, we can substitute it for φ in (7.4.1). The left side of the equa-

tion simply becomes the time derivative of the integral of c over Ω, and the

right side of the equation becomes zero.

In the numerical analysis literature, however, it is also often desired that

an approximate solution exhibit the same free energy dissipation property as

the true solution, whether for the original free energy functional as in [143] or

for a discrete version of that functional as in [64].

Although the Galerkin formulation is merely a natural restriction of

the weak Cahn-Hilliard equation to the finite space Hh, and although the free

energy functional J is defined on that space, the arguments in Section 7.3 do

not necessarily apply in the discrete case. With c replaced by ch, equation

(7.3.5) applies to the Galerkin solution, but equation (7.3.6) does not, except

when f ′
0(c) − ǫ2c∆ch is an admissible trial function in Hh. For standard finite

element spaces Hh or for the chemical free energy function f0, that will not

be the case.

As our later numerical results demonstrate, for many problems the stan-

118

dard Galerkin formulation does produce a non-increasing free energy functional

in practice. However, to guarantee such a result for all problems it is necessary

to modify the weak formulation, as follows:

Define the L2 projection operator Ph : L2(Ω) → Hh such that, for all

vh ∈ Hh and all u ∈ L2(Ω), Ph satisfies:

(Phu, vh)Ω = (u, vh)Ω (7.5.1)

Then we can modify the Galerkin formulation of the semidiscrete Cahn-

Hillard equations in such a way that they preserve the Cahn-Hilliard free en-

ergy properties in the same manner as the continuous equations. The modified

formulation includes the L2 projection operator as follows:

(
∂ch
∂t

, φ)Ω ≡ F (ch, φ)

= − (Mc∇Phf ′
0(ch),∇φ)Ω − ǫ2c

(

Ph∆ch,∇ ·MT
c ∇φ

)

Ω

+
((

Mc∇
(

Phf
′
0(ch) − ǫ2cPh∆ch

))

· ~n, φ
)

∂Ω
(7.5.2)

+ǫ2c
(

Ph∆ch,M
T
c ∇φ · ~n

)

∂Ω

Weakly applying the natural boundary condition (Mc∇ (f ′
0(c) − ǫ2c∆c))·

~n = 0 on ∂Ω, the first boundary integral term vanishes.

In this case, following the steps taken with the continuous model in

equation (7.3.5), the free energy functional J(ch) for a discrete model has time

derivative

∂J(ch)

∂t
=

(

f ′
0(ch) − ǫ2c∆ch,

∂ch
∂t

)

Ω

(7.5.3)

Because ch(t) ∈ Hh at all times t, finite differences (ch(t+ δt) − ch)/δt

are also in Hh. For ch differentiable and Hh closed, this implies that ∂ch
∂t

∈ Hh.

119

The L2 projection operator onto Hh therefore applies, giving

∂J(ch)

∂t
=

(

Phf
′
0(ch) − ǫ2cPh∆ch,

∂ch
∂t

)

Ω

(7.5.4)

After this projection, Ph(f
′
0(ch) − ǫ2c∆ch) is an element of Hh, and can

be substituted for φ in (7.5.2).

∂J(ch)

∂t
= −

(

Mc∇Phf ′
0(ch),∇Ph(f ′

0(ch) − ǫ2c∆ch)
)

Ω
−

ǫ2c
(

Ph∆ch,∇ ·MT
c ∇Ph(f ′

0(ch) − ǫ2c∆ch)
)

Ω

+ǫ2c
(

Ph∆ch,M
T
c ∇Ph(f ′

0(ch) − ǫ2c∆ch) · ~n
)

∂Ω
(7.5.5)

Integrating the second interior integral by parts cancels out the bound-

ary integral. Combining similar terms simplifies the result to

∂J(ch)

∂t
= −

(

Mc∇Ph(f ′
0(ch) − ǫ2c∆ch),∇Ph(f ′

0(ch) − ǫ2c∆ch)
)

Ω
(7.5.6)

For a positive semidefinite mobility coefficient Mc, this implies that

J(ch) will be non-increasing for the time-continuous Cahn-Hilliard problem

with spatially discretized ch.

7.6 Lyapunov Energy Functional and Crank-Nicolson

Time Discretization

In order to guarantee a non-increasing free energy functional when a

time discretization is introduced to produce a fully discrete approximation

problem, additional care is necessary. For a Crank-Nicolson-like finite differ-

encing time discretization scheme, for example, we would like to begin with

the spatially discretized equation
(

∂ch
∂t

, φ

)

Ω

= F (ch, φ) (7.6.1)

120

and approximate the time derivative by a two-point difference scheme, while

evaluating the right hand side in the middle of the timestep, at the interpolated

solution c
(θ)
h ≡ (c

(n)
h + c

(n+1)
h)/2, to retain a higher order accuracy:
(

c
(n+1)
h − c

(n)
h

δt
, φ

)

Ω

= F ((c
(θ)
h , φ) (7.6.2)

When applying this formulation to the Cahn-Hilliard equation, how-

ever, information about the potentially highly nonlinear configurational free

energy function f0 is only introduced to the approximate formulation in the

term f ′
0(c

(θ)
h). To preserve the non-increase of the total free energy functional,

we can replace this analytic derivative f ′
0 with its own finite difference approx-

imation which depends on our timestep.

Let c
(n+1)
h be the solution of the fully discretized equation

(

c
(n+1)
h − c

(n)
h

δt
, φ

)

Ω

= F̃ (c
(n+1)
h , c

(n)
h , φ)

= −
(

Mc∇Phf̃0(c
(n+1)
h , c

(n)
h),∇φ

)

Ω

−ǫ2c
(

Ph∆c
(θ)
h ,∇ ·MT

c ∇φ
)

Ω

+
((

Mc∇
(

Phf̃ ′
0(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h

))

· ~n, φ
)

∂Ω

+ǫ2c

(

Ph∆c
(θ)
h ,MT

c ∇φ · ~n
)

∂Ω
(7.6.3)

where the approximate configurational energy derivative f̃0 is defined as f̃0
′
(c

(n+1)
h , c

(n)
h) ≡

f ′
0(c

(n+1)
h) when c

(n+1)
h = c

(n)
h and otherwise as

f̃0
′
(c

(n+1)
h , c

(n)
h) ≡ f0(c

(n+1)
h) − f0(c

(n)
h)

c
(n+1)
h − c

(n)
h

(7.6.4)

We again consider the case of a weakly enforced homogeneous natural

boundary condition (Mc∇ (f ′
0(c) − ǫ2c∆c)) · ~n = 0 on ∂Ω, in which the first

boundary integral term vanishes.

121

Consider the change in the free energy functional J between two suc-

cessive timesteps t(n) and t(n+1):

J(c
(n+1)
h) − J(c

(n)
h) =

∫

Ω

[

f0(c
(n+1)
h) − f0(c

(n)
h) +

ǫ2c
2

(

∣

∣

∣
∇c(n+1)

h

∣

∣

∣

2

−
∣

∣

∣
∇c(n)

h

∣

∣

∣

2
)]

dΩ

=

∫

Ω

[

f0(c
(n+1)
h) − f0(c

(n)
h) + ǫ2c∇c

(θ)
h · ∇(c

(n+1)
h − c

(n)
h)
]

dΩ

Multiplying and dividing the configurational free energy terms by c
(n+1)
h −

c
(n)
h , then integrating the interfacial free energy terms by parts, the remaining

terms are the inner products

J(c
(n+1)
h) − J(c

(n)
h) =

(

f̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2c∆c

(θ)
h , (c

(n+1)
h − c

(n)
h)
)

Ω
+

ǫ2c

(

∂~nc
(θ)
h), c

(n+1)
h − c

(n)
h

)

∂Ω
(7.6.5)

With the essential symmetry boundary condition ∂~nch = 0, the bound-

ary term disappears. Because (c
(n+1)
h −c(n)

h) is an element of Hh, the projection

operator Ph can be applied to left hand argument of the remaining inner prod-

uct.

J(c
(n+1)
h)−J(c

(n)
h) =

(

Phf̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h , (c

(n+1)
h − c

(n)
h)
)

Ω
(7.6.6)

After dividing both sides of the equation by δt, the inner product is

now in the same form as in the fully discretized equations,
(

c
(n+1)
h − c

(n)
h

δt
, φ

)

(7.6.7)

122

Applying those equations then gives

J(c
(n+1)
h) − J(c

(n)
h)

δt
= F̃ (c

(n+1)
h , c

(n)
h , Phf̃0

′
(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h)

= −
(

Mc∇Phf̃0
′
(c

(n+1)
h , c

(n)
h), (7.6.8)

∇
(

Phf̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h

))

Ω
−

ǫ2c

(

Ph∆c
(θ)
h ,∇ ·MT

c ∇
(

Phf̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h

))

Ω

+ǫ2c

(

Ph∆c
(θ)
h ,MT

c ∇
(

Phf̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2cPh∆c

(θ)
h

)

· ~n
)

∂Ω

Integrating the second interior integral by parts cancels out the bound-

ary integral, leaving terms which simplify to

J(c
(n+1)
h) − J(c

(n)
h)

δt
= −

(

Mc∇Ph(f̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2c∆c

(θ)
h), (7.6.9)

∇Ph(f̃0
′
(c

(n+1)
h , c

(n)
h) − ǫ2c∆c

(θ)
h)
)

Ω

For a positive semidefinite mobility coefficient Mc, this value is never

positive, and so we expect the free energy functional J to never increase from

one timestep to the next.

123

7.7 Cahn Hilliard Evolution

In the results in Sections 7.8 and 7.9, a constant mobility Mc = 1 is

used in the PDE. Backward Euler time integration was used, with uniform

timestep lengths ranging from 0.001 to 0.004. Later results, including the 3D

simulations and the parametric studies, use a variable mobility Mc = c(1− c).

These results also use a trapezoidal rule time integrator with adaptive time

step selection. In all of the Cahn-Hilliard simulations to follow, a penalty value

of ǫ = 10−10 is used to apply Dirichlet boundary conditions where applicable,

and direct algebraic constraints are used when periodic boundary conditions

are applied.

7.8 Cross Interface

To examine the interface contraction effects exhibited by Cahn-Hilliard

phase evolution, we can use a cross-shaped initial condition as suggested by

[80]. Instead of using a discontinuous initial condition on a sharp-cornered

cross, however, we choose a C1 cubic initial interface function and a cross

shape beveled by circular arcs.

In Figure 7.1 we can see the solution and adaptive mesh behavior for

a cross benchmark using the mathematical free-energy model with a constant

mobility. The adaptive refinement is controlled to maintain approximately

1024 elements in the solution; in so doing it produces an interface resolution

equivalent to a uniform mesh of 4096 elements. Although this algorithm is

capable of tracking the moving boundary very accurately, it does not adapt to

the decreasing length of the boundary, and so in later time solutions we can

124

see a few unnecessarily overrefined cells.

The interface first quickly diffuses from the arbitrary width specified

in the initial conditions to the equilibrium interface width for the problem.

Next, the process of free-energy minimization acts to reduce the interface

length. For this initial condition, we know a priori that the minimum free

energy will be achieved by a circular domain, and so this benchmark serves

as a qualitative verification of the formulation and adaptive implementation.

Some Cahn-Hilliard simulations can exhibit a non-physical “pinning” on coarse

meshes [37], but we verify here that even the extremely coarse phase-interior

elements created by proper adaptivity do not cause such numerical artifacts.

Figure 7.1: Cross benchmark initial conditions and Cahn-Hilliard solutions at
t = 0.025, 0.050, 0.100, 0.200, 0.400. Hermite cubic elements are each plotted
as four bilinear squares.

125

7.9 Spinodal Decomposition

A classic application case for the Cahn-Hilliard problem is the spinoidal

decomposition of a random initial condition [25]. The first phase of the system

evolution is anti-diffusionary, and rapidly divides much of the domain into two

regions of nearly homogenous concentration, one at each of the binodal points

of the configurational free energy function, thus minimizing the configurational

free energy. With a random initial perturbation, however, these regions are

heavily interleaved and the interface between them is long and convoluted.

This stage of a numerical experiment, run on a uniform mesh of 3200 Hsieh-

Clough-Tocher (HCT) triangles, is shown in Figure 7.2. In this example, an

initial Cartesian grid of squares is defined, and each square cell is divided

from lower left to upper right into two HCT triangles. The orientation of the

triangle grid creates an anisotropic field for the initial conditions, which are

generated by taking a homogeneous concentration field and then perturbing

each value-based degree of freedom coefficient by a small random number. The

initial data is shown in Figure 7.2, where the anisotropy is exaggerated by the

GMV plotting software, which interpolates each piecewise-cubic HCT triangle

by subdividing it once and interpolates the solution on that subdivision with

four linear triangles for visualization. Even with these plots, solution results

appear isotropic after only a few timesteps.

In the second phase of the system development, the surface free energy

is more gradually reduced. The diffuse interfaces are shortened in an effect re-

sembling surface tension on a sharp interface, and the topology of the material

regions simplifies as nearby regions of matching composition merge.

126

Figure 7.2: Initial conditions with random nodal values and zero edge fluxes,
and a Cahn-Hilliard solution at t = 0.001.

Simulated spinodal decompositions using Clough-Tocher and Hermite

tensor product elements demonstrate this behavior, as seen from the later

stages of the Clough-Tocher experiment in Figure 7.3.

Finally, the Cahn-Hilliard system approaches a steady state solution

whose precise location and size depends on the particular initial total concen-

tration quantity and distribution. The steady-state solution cannot be found

by solving the stationary form of the Cahn-Hilliard equation, and cannot be

found efficiently by timestepping schemes with sufficiently small timesteps to

resolve the initial transient behavior. The use of adaptive timestepping will

be necessary for efficient longer simulations.

In 3D, the behavior is similar, although computations at a similar grid

resolution are significantly more expensive. A solution on a uniform 32,768

hex mesh with a quarter million degrees of freedom is shown in Figure 7.4.

This calculation requires minutes of clock time per timestep even on sixteen

processors.

Qualitatively, this result exhibits some of the same behavior seen in the

127

Figure 7.3: Cahn-Hilliard solutions at t = 0.005, 0.01, 0.02, 0.05. The inter-
face widths are now effectively constant, and interface lengths progressively
shorten.

128

Figure 7.4: Concentration isosurfaces for a 3D spinodal decomposition problem
at t = 0.033. Separation between the three parallel isosurface manifolds is
approximately equal to interface width.

129

two dimensional studies; e.g., as time progresses, surface tension effects smooth

and shorten the material interfaces. However, one of the most important

differences in the three-dimensional problem is topological. In two dimensions,

it is impossible for all four sides of a square domain to be connected by single-

phase paths through each of two material components. In three dimensions,

because material regions can pass unbroken over or under each other, it is

not only possible but likely for all six sides of a cubic domain to be joined by

connected regions of both materials. When estimating average properties of

the mixture based on distinct material properties of each phase, this difference

may have a large effect on the homogenized bulk values.

The transient behavior of the free energy functional for a 2D spinodal

decomposition problem is plotted in Figure 7.5. As anticipated, the free energy

of the discretization is monotonically decreasing with time.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time

G
lo

ba
l f

re
e

en
er

gy

Spinodal Decomposition Free Energy Evolution

Figure 7.5: Integrated free energy over the square domain for the Galerkin
approximation to a 2D spinodal decomposition problem.

130

7.10 Mesh Refinement

Because of the smoothing properties of the fourth-order operator in

the Cahn-Hilliard equation, errors which occur on an individual time step in

a transient simulation tend to decay rather than grow in future time steps.

In Figure 7.6, the time evolution of the L2 error for a typical transient spin-

odal decomposition problem is shown, for different spatial meshes and time

steps with the same 1% initial perturbation conditions. The discretization

sequence is generated by uniform refinement in space and time, and the finest

discretization is used as a reference solution for error calculations. The coars-

est solution is obtained with a uniform Hermite mesh with spacing h1 = 1/32

and time step δt = 1/4000; the reference solution is obtained with h4 = 1/256

and δt = 1/32000. The dissipation in the Cahn-Hilliard operator prevents ex-

ponential accumulation of the error with increasing time. Instead, as seen in

Figure 7.7, the coarsest approximate solution develops topological differences

to the reference solution, which lead to the slow but monotonic error growth in

Figure 7.6. In the finer two approximations, the solution becomes first topo-

logically and then visually indistinguishable from the reference solution, and

the L2 error varies but remains bounded as time increases.

In even a moderately developed Cahn-Hilliard system, the solution be-

gins to be characterizable as a collection of single-phase regions with nearly

constant concentration, separated by a maze of thin interfaces of rapidly vary-

ing concentration. Efficiently approximating such solutions is a natural task

for adaptive h refinement, to allocate degrees of freedom along thin interfaces

where they can have a significant effect on solution accuracy and to remove

131

0 0.005 0.01 0.015
10

−4

10
−3

10
−2

10
−1

10
0

Time

L 2 e
rr

or

coarse
medium
fine

Figure 7.6: L2 error compared to a reference solution, as a function of time, for
a 2D spinodal decomposition approximated on a sequence of uniformly refined
discretizations

Figure 7.7: Solutions at t = 0.015 on h1 and h4 grids. The h2 solution is
slightly perturbed from the reference h4 solution, and the h3 solution is visually
indistinguishable from h4.

132

degrees of freedom from region interiors where they can needlessly increase

computational complexity. The particular effectiveness of adaptive mesh re-

finement on the Cahn-Hilliard problem has recently been shown in the finite

difference literature [38].

Because of the narrow aspect ratio of the interface regions and because

those interfaces move through the domain with advancing time, finding an

algorithm to automatically and efficiently track them with element refinement

and coarsening is difficult. Initial experiments based on heuristic rules using

a Laplacian jump error indicator are capable of correctly finding and refining

into Cahn-Hilliard interfaces, but more work is needed before these methods

will be responsive enough to reliably track rapidly changing interfaces. An-

other theoretical concern is the effect of adaptive coarsening on the free energy

functional; an otherwise monotonic scheme can see local increases in the free

energy functional when an element coarsening is performed.

Figure 7.8 displays one timestep of a numerical experiment using adap-

tive h refinement. The mesh refinement and coarsening strategy used here

attempts to minimize the error at each timestep while maintaining a roughly

constant number of active elements, by trading element coarsening for refine-

ment whenever the error indicator suggests that such a trade would improve

the final result.

7.11 Surface Patterning

The Cahn-Hilliard equation is useful for simulating phase decomposi-

tion in thin film patterning problems, such as are of interest in microelectron-

133

Figure 7.8: Left: Refined Clough-Tocher mesh and solution in an adaptive
transient Cahn-Hilliard problem, tracking a random spinodal decomposition at
t = 0.4. Right: Refined Hermite mesh and Cahn-Hilliard solution, progressing
from a cross-shaped initial condition to t = 0.15.

ics [113]. Directed phase separation patterns may be realized by coupling the

Cahn-Hilliard problem to anisotropic surface stress, bulk fluid flow, electrical

fields, or surface chemistry [19,87,96]. An example of thin film pattern forma-

tion is pictured in Figure 7.9, the results of a binary polymer phase separation

experiment reported by Karim et. al. [79]. We model the effect of the surface

coatings by adding a spatially varying bias to the configurational free energy

term in the Cahn-Hilliard equation. For a given bias frequency ν and bias

amplitude B, define the adjusted local configurational free energy at point

(x, y, z) as

f0b(c) ≡ f0m(c) +
B

π
cos(2πνx)c (7.11.1)

where f0m(c) is the unbiased free energy fenction from equation defined as

(7.2.3). The biased Cahn-Hilliard equation to be solved remains of the same

form as in equation (7.2.9) but with f ′
0(c) ≡ f ′

0b(c). In the parametric studies

134

to follow in Section 7.14, the same bias term is added, but to f0c(c) rather

than f0m(c).

Figure 7.9: An experimental pattern of deuterated polystyrene and polybuta-
dine on a monolayer substrate [79].

Because these phase decomposition experiments are being carried out

on very thin film domains, it is natural to simulate the problem in two di-

mensions. As the thickness of the film becomes negligible compared to the

thickness of the diffuse material interfaces and of the pattern characteristic

length, the time scale during which the composition becomes homogenous in

the vertical direction should become negligable compared to the time scales

involved in interface motion in the horizontal directions.

In the numerical experiments pictured, the sinusoidally varying surface

bias is given an amplitude B of between 4% and 32% of the total configura-

tional free energy present in a fully blended mixture. A numerical spinodal

decomposition is then run for each bias amplitude, with the same pseudoran-

dom initial conditions.

The results for 4% and 8% bias amplitudes, pictured in Figure 7.10,

135

are difficult to distinguish from an isotropic spinodal decomposition result. At

12% and 16% bias, pictured in Figure 7.11, anisotropic effects are clear, but

the surface pattern is not duplicated in the adsorbed chemical pattern. At

20% and higher bias, pictured in Figure 7.12, the surface pattern is copied to

the adsorbed chemical, with decreasing probability and density of defects.

It is interesting to note that, in these cases, the magnitude of the con-

figurational free energy bias is not large enough to make the final patterned

solution a global minimizer of the total free energy of the system. The long in-

terfaces in the achieved pattern result in large values of interfacial free energy

in the solution, larger than the reduction of configurational free energy which

is enabled when a pattern conforms to the imposed bias. The patterning bias

acts, not to force the system to reach a desired global minimum of free energy,

but to encourage the system to reach a desired local minimum which is sta-

ble with regard to small perturbations. This is one reason why the transient

behavior of a patterned phase decomposition is so important.

Figure 7.10: Patterned spinodal decomposition simulations run with a 4% and
8% configurational free energy bias amplitudes, at t = 0.5.

136

Figure 7.11: Patterned spinodal decomposition simulations run with a 12%
and 16% configurational free energy bias amplitudes, at t = 0.5.

Figure 7.12: Patterned spinodal decomposition simulations run with a 20%
and 24% configurational free energy bias amplitudes, at t = 0.5.

137

7.12 3D Thin Film Patterning

If the thin film layer is significantly thicker than the equilibrium Cahn-

Hilliard material interface thickness, homogenization in the vertical direction

may not be rapid enough for three dimensional behavior to be negligible. We

can verify this supposition experimentally. In past studies, surface-directed

chemistry has been shown to produce dominant wave vectors normal to a sur-

face which preferentially attracts one of the separating materials in a phase

separation process [78, 105]. To minimize the tendency for heterogeneous be-

havior, we apply a configurational energy bias which is uniform in z, as might

be produced by an electric field applied from both sides of the thin film. Any

solution variation in the z direction will then be entirely the result of initial

perturbations in the solution, as amplified by the initial anti-diffusive behavior

of a sudden phase decomposition problem.

In Figure 7.13, we examine a simulation with roughly 4% configura-

tional free energy bias, in a 3D domain where the fluid thickness is equal to

the wavelength of the imposed bias. In the early stages of its development,

at t = 0.125, the solution is still clearly three-dimensional, with numerous

horizontal material interfaces and threaded loops of single-phase regions.

Although this convoluted intermediate result would appear to make

it less likely that the final state will form a defect-free pattern, in fact the

reverse appears to be true. At time t = 0.5, the only two remaining defects

are shrinking, and the solution interior has retained the imposed bias pattern

far more faithfully than in the 2D examples. It seems that the additional

connectivity in the fully 3D topology has prevented gaps from forming in the

138

pattern lines in intermediate stages, and thus prevented permanent defects

from forming in the long-term results.

In simulations undertaken with a stronger free energy bias, the rapid

tendency of the material to flow into the prescribed pattern is evident, over-

whelming three dimensional behavior. In Figure 7.14, a 3D simulation is

plotted at the same times t in the same domain, but with a four times greater

bias amplitude. Some shrinking ripples in the z direction can still be seen

in the material interfaces, but the solution has still become essentially two

dimensional.

Figure 7.13: Concentration isosurfaces in a patterned 3D spinodal decompo-
sition simulation run with a 4% configurational free energy bias amplitude, at
t = 0.125 and t = 0.5.

The degree to which a three dimensional solution resembles it’s two-

dimensional counterpart depends on the ratios of the Cahn-Hilliard interface

thickness, imposed bias wavelength, and domain thickness. In Figure 7.15,

we see a simulation conducted with the same parameters as in Figure 7.13

but with one fourth of the domain thickness. The intermediate results show

some three dimensional behavior, with regions of vertically layered material,

but large areas of the domain are already essentially two dimensional. Unlike

139

Figure 7.14: Concentration isosurfaces in a patterned 3D spinodal decompo-
sition simulation run with a 16% configurational free energy bias amplitude,
at t = 0.125 and t = 0.5.

the three dimensional results on thick domains, here material regions form at

least a dozen disconnected sets rather than two. Some of the gaps which exist

at this intermediate stage are stable and growing at t = 0.5, leading toward a

final solution with three short-circuits and one break in the pattern.

Figure 7.15: Concentration isosurfaces in a patterned thin 3D spinodal decom-
position simulation run with a 4% configurational free energy bias amplitude,
at t = 0.125 and t = 0.5.

140

7.13 Solution Postprocessing

For the spinodal phase decomposition problem, examination of the full

2D or 3D simulation at each timestep can be overwhelming due to the large

quantity of data involved. To make it easier to draw conclusions about a

simulation result, this data can be distilled into a few simple scalar results

which describe some of the important features of the solution at a particular

timestep.

First and most obviously, for the patterned phase decomposition prob-

lem it is important to know how well the solution conforms to the pattern

at each timestep. The added bias function which causes a pattern to develop

will not be the same as the desired pattern, due to the nonlinear antidiffusive

properties of the Cahn-Hilliard function, so it is impossible to simply take a

function space norm of the difference between the concentration function and

some simple transformation of the pattern function. Instead, let us define a

“defect count” for a concentration field as follows: Along each manifold where

the bias function is at a local maximum or minimum, a correctly patterned con-

centration function should take values near the corresponding spinodal value,

and a defect will be said to exist if anywhere along that manifold the concen-

tration function is nearer to the wrong spinodal value; i.e. if c < 0.5 along

manifolds where the bias is intended to generate a high concentration or if

c > 0.5 where a low concentration is intended. For the sinusoidal bias function

used to generate line patterns, for example, a bias with 8 peaks has 16 man-

ifolds where a defect may occur, either due to features like “circuit breaks”

where a hole exists in a high concentration line or like “short circuits” where

141

two separate lines are bridged by a region of high instead of low concentra-

tion. The defect count is then an integer value (in this example between 0 and

16) reflecting how many pattern manifolds exhibit a defect. This definition

is insensitive to slight variations in the final pattern, and counts only those

deviations important enough to cause a topological change.

As a more sensitive means of exploring Cahn-Hilliard coarsening in

both the isotropic spinodal decomposition and anisotropic phase decomposi-

tion problems, we examine the behavior of the correlation lengths. Coarsening

of solution length scales is a common object of investigation in unpatterned

phase separation problems [66, 122], and the effects of patterning on this pro-

cess are of interest. For a concentration function c(~x), we define the corre-

sponding correlation function r(~y) to be

r(~y) ≡< c(~x)c(~x+ ~y) > − < c(~x) >2 (7.13.1)

where < f(~x) > denotes the average of an integrable function f over all ~x in

the domain Ω,

< f(~x) >≡
∫

Ω
f(~x) dΩ
∫

Ω
1 dΩ

(7.13.2)

The correlation function is effectively a measure of how related two

points in the domain are likely to be if they are separated by a distance ~y.

It takes a maximum at ~y = ~0 and generally decays with distance. In some

analyses of spinodal decomposition problems, an analytic form of the expected

correlation function can be found and experimental data fitted to it; the “cor-

relation length” in this case simply refers to a length parameter in the fitted

correlation function. It is dangerous to do data fitting with correlation func-

tions on periodic or symmetry-bounded domains where ~y may be a significant

142

fraction of the domain size, however, because in these cases r(~y) will also be

periodic in space and will never completely decay to zero. To avoid this prob-

lem, and to define a correlation length in patterned decomposition scenarios

where we do not want to make a priori assumptions about the form of the

correlation function, we will define the correlation length l in the direction of

unit vector ~y to be the distance at which r(l~y) = 0.5r(~0), as is done in [105].

In numerical calculations, the correlation function r in each direction will be

evaluated on a uniform grid, and the correlation lengths will be calculated

from a piecewise-linear interpolant of the grid point values of r.

For the unpatterned spinodal decomposition function, correlation lengths

and average domain lengths have been of particular interest as a means of in-

vestigating the dynamic scaling of the system. For models with a conserved

order parameter such as the concentration in the Cahn-Hilliard equation, the

expected growth of intermediate length scales L over time t is the Lifshitz-

Slyozov law, L(t) ∝ t1/3. In numerical and experimental results, such scale

growth has been observed when L is intermediate between the lengths of the

equilibrium interface thickness and the domain size [122, 123]. In patterned

phase decomposition studies, we can expect the pattern to strongly influence

the length scales involved; a phase decomposition solution which correctly

matches a line pattern, for example, will have an infinite length scale in the

direction parallel to the pattern and will have a length scale proportional to

the wavelength in the direction perpendicular to the pattern.

In the parametric studies in Section 7.14, the defect count will be of

the most importance as a final quantity of interest for patterning processes,

143

while the correlation lengths are useful as a way to examine the development of

solution coarsening and anisotropy in earlier stages of the transient simulation.

The total free energy of the systems, as well as their rates of change, are also

transient quantities of interest to be examined.

7.14 Parametric Studies

The behavior of the concentration function in the transient patterned

spinodal decomposition problem depends on the set of physical parameters

defining the problem. However, the exact nature of these dependencies can

not often be predicted in advance from a priori arguments and analytic ex-

amination of the governing equations. To try to gain a better understanding

of the complex processes at work here, we use parametric numerical studies to

compare solutions generated from differing initial conditions or with differing

physical constants.

Complicating this task is the fact that the solution to a spinodal decom-

position problem depends not only on the physical parameters of the problem

but also on the solution’s particular initial perturbation away from the spin-

odal point. Because of the instability of the homogeneous initial concentration

solution in this problem, two Cahn-Hilliard solutions can differ significantly in

their transient evolution, based solely on the particular features of the initial

perturbation of each solution away from the unstable point. The question at

hand, then, is not just “How do differing fixed parameters cause the develop-

ing Cahn-Hilliard solution to vary?” The question is also one of uncertainty

propagation: “How much uncertain variance can be expected to arise from the

144

aleatoric uncertainty in the perturbations in the initial solution?”

To investigate both aspects of this problem, our code employs the

Monte Carlo Finite Element Method. Rather than wait for numerical noise

to create an initial perturbation, we generate a perturbation in the initial

conditions using a pseudorandom number generator (PRNG), and we repeat

simulations with the same physical parameters but with different “seed” val-

ues initializing the PRNG. Specifically, for each Monte Carlo sample with a

given initial perturbation amplitude A and average initial concentration c0,

each node n of a grid is assigned the value c0 + (2θn − 1)A, where θn is an in-

dependent pseudorandom number between 0 and 1. This field is generated for

an initial grid of Hermite tensor product cells of size h = 1/32, and then pro-

jected onto the more refined mesh used for the finite element simulation. From

this point the finite element simulation is deterministic; i.e. there is no further

stochastic noise such as might be found in a Cahn-Hilliard-Cook model [44].

Analysis of functionals of the output data may then allow the examination of

the mean, variance, etc. from this random sampling of the perturbation space.

Even a few samples is sufficient in many of the following results to allow para-

metric variance to be distinguished clearly from uncertainty variance.

Initial Perturbation Magnitude Because this method depends on the

proposition that an uncertain initial perturbation can be properly approx-

imated by a deliberate perturbation of a small but finite magnitude, it is

natural to first consider what effect the size of that perturbation has on the

final result. In Figures 7.16 and 7.17, the effect of the perturbation strength

on a typical simulation is displayed. For this simulation a line pattern bias of

145

frequency 4 and amplitude 0.04 is imposed, and the Cahn-Hilliard equation is

run with physical parameters NkT = 0.6, Nω == 1.8, and ǫc = 0.01, on the

unit domain.

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2

Time

Concentration Rate of Change for Various Initial Perturbation Magnitudes

Figure 7.16: The rate of change of the concentration (in H2 norm) plotted
against time, for initial perturbation magnitudes ranging from 0.001 (red) to
0.008 (purple).

In Figure 7.16, the dependent variable being graphed is the rate of

change
∂||c||H2(Ω)

∂t
. The axes here are both in log scale due to the extreme differ-

ences in timescales over the course of the simulation. The early time behavior

here clearly depends far more on the perturbation magnitude than on the ran-

dom details of that perturbation, with smaller perturbations resulting in much

slower early solution development for t < 0.001. This slower development leads

to a delay in the final separation phase, as can be seen by the lagging peaks

around t < 0.01. However, once regions with concentrations near stable single-

146

phase values begin to form, the differences between simulations with differing

initial perturbation amplitudes largely vanish. In the late-time development

of the simulation, for instance, the solutions are clearly segregated into four

groups corresponding to the four Monte Carlo seeds used, and solutions of

differing initial perturbation magnitude resemble each other more closely than

they resemble solutions of differing initial perturbation “shape”.

-0.4

-0.2

0

0.2

0.4

0.6

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

Time

Free Energy Evolution for Various Initial Perturbation Magnitudes

Figure 7.17: The free energy of the Cahn-Hilliard system plotted against time,
for initial perturbation magnitudes ranging from 0.001 (red) to 0.008 (purple).

In Figure 7.17, a plot of the total free energy functional with respect

to time for the same simulation, the reason for this insensitivity of long-term

behavior seems to be clearer. Although the lower magnitude perturbation solu-

tions seem to initially lag the higher magnitude solutions, the lower magnitude

solutions “catch up” faster in general.

Figure 7.18 confirms this late-stage insensitivity. Behavior at t = 1

147

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Various Initial Perturbation Magnitudes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Various Initial Perturbation Magnitudes

Figure 7.18: The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for initial perturbation magnitudes rang-
ing from 0.001 (red) to 0.008 (purple).

and beyond appears uncorrelated with initial perturbation magnitude. Before

t = 0.01, however, a startling effect of low perturbation magnitudes can be

seen: the correlation length in the direction of the line pattern briefly jumps to

infinity, as if the concentration solution had become completely aligned with

the pattern just as phase separation had barely begun!

More details on this effect of initial perturbation amplitude can be seen

in Figure 7.19, a plot of the number of pattern defects with respect to time for

this simulation. At the frequency of the imposed pattern on this simulation,

up to 8 defects can be seen. The majority of the simulations see the defect

count eventually drop to 0 at these parameter settings, but for the simulation

with the smallest initial perturbation, magnitude 0.001, the defect count also

drops from 8 to 1-3 during the very start of the simulation by t = 0.001, only

to rise back to 8 before t = 0.005. Examination of the detailed simulation

results, such as the example in Figure 7.20 indicates what is really happening

here: the initial drop in defect count precedes the full phase decomposition.

148

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

Time

Pattern Defects for Various Initial Perturbation Magnitudes

Figure 7.19: The defect count of the Cahn-Hilliard system plotted against time,
for initial perturbation magnitudes ranging from 0.001 (red) to 0.008 (purple).
Lines are slightly staggered away from integer values to avoid overlap on the
graph.

Figure 7.20: Plots of the concentration in a patterned phase decomposition,
with an initial perturbation magnitude of 0.001, at time t ≈ 0.0008 on the left
and t ≈ 0.1 on the right. The early-stage solution appears to fit the imposed
pattern, but full decomposition has not yet occurred.

149

Because a “defect” is defined to be a greater than 0.5 concentration along the

manifolds where a low concentration is desired or a lesser than 0.5 concen-

tration where a high concentration is desired, a perturbation which is aligned

with the imposed pattern bias is detected as a correct pattern even when that

perturbation has not yet grown so far that the concentrations along the pat-

tern have not approached the double-well minima. The bias of the imposed

pattern briefly causes the concentration function to resemble that pattern,

but when the higher frequency random perturbation grows then the pattern is

again obscured, only to be recreated a second time in the late-time simulation.

We only observe this effect for the smallest initial perturbation amplitude; at

larger amplitudes, the brief pattern alignment is overwhelmed by even the

small random variations in the initial conditions.

Film Thickness The results of the three-dimensional pattern self-assembly

experiments in Section 7.12 suggested two conclusions. First, it appeared that

for sufficiently thin films the concentration variable rapidly homogenized in

the vertical direction, so that even the three-dimensional phase decomposi-

tion problem becomes essentially two-dimensional. Second, it was found that

thicker films replicated an imposed pattern bias more reliably than thinner

films, due to the increased topological complexity of the initial phase separa-

tion which left material connections across gaps that otherwise might develop

into pattern defects.

To examine these conclusions in more detail, we simulate the same phys-

ical parameters as in the previous study, but on a three-dimensional domain

with thickness ranging from 0.0625 to 0.25. Periodic boundary conditions are

150

still imposed on the four sides of the square domain, and symmetry (no-flux)

boundary conditions are applied on the top and bottom. Because these sys-

tems can involve over half a million degrees of freedom in 3D, the code here is

run on 256 processors rather than our typical 16.

1e-08

1e-06

0.0001

0.01

1

100

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

||d
t c

|| 2
 /

T
1/

2

Time

Scaled Concentration Rate of Change for Varying Film Thickness T

Figure 7.21: The rate of change of the concentration (in a scaled H2 norm)
plotted against time, for domain thicknesses ranging from 0.0625 (red) to 0.25
(purple).

Figure 7.21, which plots scaled Hilbert norms of the time rate of change

of the concentration solution, appears to show results all consistent with the

earlier 3D behavior: the most interesting late-stage behavior occurs only on

the thinnest domain, with thickness T = 0.0625. For thicker domains, the

average rate of change of the system is greater up until approximately time

t = 0.1, after which point the thick solutions appear to smoothly approach a

steady state.

151

Because of the domain-dependent definitions of Hilbert norms and of

the total energy integral (that is, the energy norm squared), we must scale

these outputs to arrive at directly comparable numbers in Figures 7.21 and

7.22. For a domain of thickness T we scale the H2 norm by dividing by
√
T ,

and we scale the energy functional by dividing by T .

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

/ T

Time

Scaled Free Energy Evolution for Varying Film Thickness T

Figure 7.22: The free energy per unit volume of the Cahn-Hilliard system
plotted against time, for domain thicknesses ranging from 0.0625 (red) to 0.25
(purple).

Figure 7.22, a plot of total free energy per unit volume, also confirms

this behavior. The free energy in the thick domains falls more rapidly after

t = 0.1, and quickly reaches a steady state.

In the correlation length plots in Figures 7.23 and 7.24, it is made clear

that the underlying cause of these effects is due to the different reactions of

thicker and thinner systems under the patterned bias. All of the thick sim-

152

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Varying Film Thickness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Varying Film Thickness

Figure 7.23: The horizontal and vertical (in-film directions) correlation lengths
of the Cahn-Hilliard system plotted against time, for domain thicknesses rang-
ing from 0.0625 (red) to 0.25 (purple).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Through-Film Correlation Lengths for Varying Film Thickness

Figure 7.24: The thickness (through-film) direction correlation lengths of the
Cahn-Hilliard system plotted against time, for domain thicknesses ranging
from 0.0625 (red) to 0.25 (purple).

153

ulations see pattern-aligned correlation lengths grow to infinity by t = 0.1,

whereas in the thinnest simulation this growth occurs later or not at all. Even

for the instances where the thinnest simulations eventually align with the

pattern imposed-direction, they do not necessarily adopt the desired pattern

wavelength, as can be observed in the differing final pattern-perpendicular

correlation lengths reached. A unique feature of the three-dimensional sim-

ulations is the existence of a correlation length in the third dimension, the

through-film direction. In Figure 7.24 it can be seen that homogenization in

this direction, although an inevitable feature of the end-state in any of the

systems being studied, occurs at a time two orders of magnitude earlier in

the thinnest domains, well before other differences in the simulation behavior

become clear. It is clear that this early homogenization is driving the results.

The final quantity of interest, the evolving defect count, can be seen

plotted in Figure 7.25. As expected from earlier results, the defect count

is reduced to zero in sufficiently thick simulations, but for the nearly two-

dimensional thin domain results defects have a high likelihood of being stuck

in place in the final steady-state solution. This result confirms that our two-

dimensional studies to follow are conservative in that sense, simulating the

least reliable patterning behavior of very thin films.

Domain Size When solving a patterned phase decomposition problem, by

necessity we do not solve for the concentration solution on the full physical

domain of the problem. Just as engineering interest in the unpatterned Cahn-

Hilliard problem stems from the desire to understand grain-scale coarsening

behavior in macroscale systems, interest in directed pattern self-assembly typ-

154

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

Time

Pattern Defects for Varying Film Thickness

Figure 7.25: The defect count of the Cahn-Hilliard system plotted against
time, for domain thicknesses ranging from 0.0625 (red) to 0.25 (purple). Lines
are slightly staggered away from integer values to avoid overlap on the graph.

155

ically focuses on the ability to assemble fine scale patterns in large domains.

The domain size in these problems typically vastly exceeds both the pattern

length scale and the interfacial layer thickness. A simulation using a mesh

of sufficient size and resolution to resolve all solution features throughout the

entire domain would be intractable, so instead the bulk properties of these

systems are investigated by artificially truncating the domain, then applying

symmetry or periodic boundary conditions to approximate an infinite domain.

However, as the solution to a Cahn-Hilliard problem coarsens, it is possible

for self-interaction with periodic boundary conditions or boundary pollution

from symmetry boundary conditions to have a noticeable effect on the system

behavior.

To ensure that our simulations are being run on sufficiently large do-

mains to make the effects of domain size negligible, a series of simulations is

run with the same physical parameters as used in the previous studies, but on

domains of size 1× 1, 2× 2, and 4 × 4. In Figures 7.26 and 7.27, it is quickly

seen that the early development of the solution, as measured by the H2 norm

of the rate of change or by the total free energy of the system, is essentially

unaffected by domain size. Note that we must again scale the Hilbert norms

and the total energy integral to derive directly comparable output functionals.

For a square domain of size L × L we divide the former by L and the latter

by L2.

One domain size dependent change in behavior can be seen: on the

smallest domains, the solution is likely to be forced to an earlier steady state,

as the solution change rate plummets and the system free energy levels off. The

156

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2
 /

L

Time

Scaled Concentration Rate of Change for Various L × L Domain Sizes

Figure 7.26: The rate of change of the concentration (in a scaled H2 norm)
plotted against time, for domain sizes ranging from 1×1 (red) to 4×4 (blue).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

/ L
2

Time

Scaled Free Energy Evolution for Various L × L Domain Sizes

Figure 7.27: The free energy per unit area of the Cahn-Hilliard system plotted
against time, for domain sizes ranging from 1 × 1 (red) to 4 × 4 (blue).

157

specific time at which this occurs depends on the particular initial conditions

of each Monte Carlo iterate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Various Domain Sizes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Various Domain Sizes

Figure 7.28: The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for domain sizes ranging from 1 × 1
(red) to 4 × 4 (blue).

The correlation lengths in Figure 7.28 require no scaling; the defini-

tion of correlation length in section 7.13 produces results which are directly

comparable from one domain size to another. The correlation length results

also show behavior dependent on domain size in the 1 × 1 simulations, where

the pattern-perpendicular correlation lengths stop growing at relatively early

times. The small domain size appears to reinforce the imposed pattern bias,

which acts to limit the growth of length scales across the pattern lines.

The question of how to scale defect counts from one domain size to

the next has no simple answer. For solutions in which defects are sparse,

increasing the length and width of the domain by L would be expected to

increase the number of pattern defects by nearly L2, as the number of defects

per unit area remained constant. For solutions in which defects are common,

however, defects can “overlap”, when two defects which break the same line in

158

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

 /
L

Time

Scaled Pattern Defects for Various L × L Domain Sizes

Figure 7.29: The defect count per unit length of the Cahn-Hilliard system
plotted against time, for domain sizes ranging from 1×1 (red) to 4×4 (blue).

the imposed pattern are only counted as a single broken line, i.e. as only one

defect. In this case, the defect count for a domain whose width in the pattern-

perpendicular direction was increased by a factor of L would be expected

to increase only proportionally with L, not L2. For these studies, typically

conducted with parameters which lead to a dense defect count as the initial

perturbation grows but a sparse defect count as the solution aligns with the

pattern bias, neither scaling remains valid throughout the entire course of a

simulation.

Regardless of how defect counts are scaled, one facet of the domain size

dependence of simulation behavior is clear: in the smallest domain, the defect

count becomes fixed much earlier in the simulations, as the final topology of

the solution becomes fixed.

159

Gradient Coefficient Physical values for NkT and Nω for physical phase

separation problems are relatively common in the Cahn-Hilliard literature, and

typical values are applied in these numerical studies. However, physical values

for the interfacial energy term coefficient are harder to come by. In fact,

the gradient coefficient ǫc is often artificially increased, to make the diffuse

interfaces wider and therefore more tractable for numerical simulation.

Although ǫc may be safely artifically adjusted when it is a sufficiently

small fraction of the physical length scales of interest, for the patterned spin-

odal decomposition problem, the choice of ǫc may become very physically

significant due to non-local interfacial effects which may act to repair pattern

defects. To illustrate this point, using the other fixed parameters as in the

above studies, we vary the gradient coefficient from ǫc = 0.01 to ǫc = 0.04 to

examine its effects on the results.

In Figure 7.30, the importance of the gradient coefficient becomes ob-

vious. The behavior both of the early phase decomposition and the later

interfacial coarsening depends strongly on the interfacial energy parameter.

In Figure 7.31, it can be seen that, although for these parameters the

final state of the system is sensitive to the particular initial perturbation of

the Monte Carlo sample, interesting behavior differences distinguished purely

by the interfacial terms are dominant.

Figures 7.32 and 7.33 identify some of the specific behavior differences

that can be seen with increasing gradient coefficients. In the red lines plotting

defect counts for ǫc = 0.01, the coefficient used in other parameter studies in

this work, typical behavior is seen: a full defect count at early time, followed

160

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

1e-10 1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2

Time

Concentration Rate of Change for Various Gradient Coefficients

Figure 7.30: The rate of change of the concentration (in H2 norm) plotted
against time, for gradient coefficients ranging from 0.01 (red) to 0.04 (purple).

-0.4

-0.2

0

0.2

0.4

0.6

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

Time

Free Energy Evolution for Various Gradient Coefficients

Figure 7.31: The free energy of the Cahn-Hilliard system plotted against time,
for gradient coefficients ranging from 0.01 (red) to 0.04 (purple).

161

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Various Gradient Coefficients

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Various Gradient Coefficients

Figure 7.32: The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for gradient coefficients ranging from
0.01 (red) to 0.04 (purple).

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

Time

Pattern Defects for Various Gradient Coefficients

Figure 7.33: The defect count of the Cahn-Hilliard system plotted against
time, for gradient coefficients ranging from 0.01 (red) to 0.04 (purple). Lines
are slightly staggered away from integer values to avoid overlap on the graph.

162

by a growth of self-correlation lengths, gradual defect reduction, and eventual

alignment of correlation lengths with the pattern direction as Cahn-Hilliard

coarsening completes. For higher gradient coefficients, surprisingly, the pat-

tern defects appear to be completely eliminated in the early stages of phase

separation, only to potentially reappear in later stages of the simulations. Ex-

amination of the final steady-state values for these simulations reveals the

reason why: as ǫc increases, so does the equilibrium diffuse interface thick-

ness of the simulation. As the diffuse interface thickness becomes a significant

fraction of the pattern bias wavelength, the desired pattern becomes unsta-

ble. Even if in the early stages of coarsening a material stripe forms around

each desired line in the pattern, adjacent stripes tend to merge, segregating

material into a pattern with the desired directionality but an undesirably low

frequency. For the largest gradient coefficient tested, ǫc = 0.04, this instability

is so pronounced that it even ruins the previously attained vertical symme-

try of the solution, as seen in the graph of pattern-parallel correlation lengths.

Concentration solution plots in Figure 7.34 demonstrate the detailed evolution

of this instability. In the initial pattern-aligned, partly decomposed solution

at left, the thickness of the interfacial layer is so great that two points in neigh-

boring pattern lines interact and attract. The long-distance interactions from

the merged shape affect the remaining material zones in the domain, and the

combined zones eventually form a pattern which is aligned with the imposed

bias but which has only half of the bias frequency.

Average Concentration Because the range of unstable concentration val-

ues is wide for the ratio of NkT to Nω used in these examples, it is possible

163

Figure 7.34: The development of an instability in a patterned spinodal decom-
position problem with ǫc = 0.04.

to get spinodal decomposition behavior from a wide range of initial concen-

trations. By varying the initial concentration from .25 to .5, we can see how

the particular choice of initial concentration affects the final solution.

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2

Time

Concentration Rate of Change for Various Average Concentations

Figure 7.35: The rate of change of the concentration (in H2 norm) plotted
against time, for average concentrations ranging from 0.25 (red) to 0.5 (purple).

In Figure 7.35, the average concentration value has a clear impact on

the early stage of phase decomposition. Binary mixtures with a more balanced

164

average concentration tend to show earlier, faster decomposition than mixtures

which are predominantly composed of one species or the other.

The effect of average concentration on late-time behavior, however, is

not as clear here. As the “forest” of spikes from different Monte Carlo samples

makes clear, the simulation parameters here make the particular timing of

a given decomposition very sensitive to the shape of the initial perturbation

determining that decomposition.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

Time

Free Energy Evolution for Various Average Concentrations

Figure 7.36: The free energy of the Cahn-Hilliard system plotted against time,
for gradient coefficients ranging from 0.25 (red) to 0.5 (purple).

The reason for the differences in early phase separation behavior with

different average concentrations is made clear by the graph of free energy in

Figure 7.36. More balanced average concentrations begin closer to the peak

in between the double wells in the chemical free energy diagram, and that

free energy drives a faster decomposition of the mixture. In the late phases of

165

the simulations, however, most material is in regions whose concentration is

close to one or another of the stable binodal points, and because our chemical

free energy function is symmetric except for the imposed patterned bias, the

binodal points have roughly the same free energy densities, so the total free

energy of the system is not affected by the question of whether or not the two

stable regions include the same amount of material.

Bias Amplitude The most straightforward way to impose a directed pat-

tern on self-assembling material more reliably is simply to increase the strength

of the imposed pattern. We simulate patterns of increasing strength by vary-

ing the amplitude of the spatially varying bias term added to the chemical free

energy equation. In this experiment, the bias amplitude is varied from 0 to

0.08, while other parameters are kept the same as in the preceding simulations.

In Figure 7.37, the rate of change of solutions with different patterned

bias amplitudes is plotted. For low bias amplitudes, the behavior is familiar:

gradually decreasing rates of change, intermittently punctuated by the short

spikes of topological change events. For the strongest bias amplitudes, the

simulation behavior differs qualitatively; the obviously stochastic early-time

behavior is followed by a more gradual, relatively smooth, yet much steeper

reduction in the rate of solution change. By forcing the solution topology

to resemble the pattern topology, these largest imposed biases restrict the

possibility of late-term topological changes, and so the late-term development

of the concentration function is a relatively placid straightening of the pattern

interfaces.

166

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2

Time

Concentration Rate of Change for Various Imposed Bias Magnitudes

Figure 7.37: The rate of change of the concentration (in H2 norm) plotted
against time, for pattern bias amplitudes ranging from 0 (red) to 0.08 (purple).

-0.4

-0.2

0

0.2

0.4

0.6

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

Time

Free Energy Evolution for Various Imposed Bias Magnitudes

Figure 7.38: The free energy of the Cahn-Hilliard system plotted against time,
for pattern bias amplitudes ranging from 0 (red) to 0.08 (purple).

167

The effect of these stronger biases can also be seen in the effect of

pattern bias strength on global free energy, plotted in Figure 7.38. The early-

time development of the system is relatively insensitive to random perturbation

details: in general, the stronger the imposed pattern bias, the faster the free

energy of the system is reduced.

One other notable feature of the patterned Cahn-Hilliard problem is

illustrated again by Figure 7.38: the global free energy of the solutions con-

forming to imposed patterns is actually higher than the free energy of the

solutions which break those patterns and develop defects. Although the pat-

tern bias allows for reduced configurational free energy in the phases of the

system which conform to the imposed bias, the many long straight interfaces

in the patterned solution inevitably lead to a higher interfacial free energy.

The goal of patterning in a Cahn-Hilliard process is not to create a desired

end state for the problem which is a global minimizer of the total free energy,

it is to create desired states which are stable local minima of that free energy

functional.

Pattern bias amplitude has a straightforward effect on the late-stage

development of solution correlation lengths. Stronger patterning bias tends

to control the growth of correlation lengths in the direction perpendicular to

the pattern lines, as coarsening is discouraged across pattern boundaries, and

stronger patterning bias encourages more rapid growth of correlation lengths

in the direction parallel to the pattern lines, as material of the same phase

is drawn preferentially into the aligned matching bias regions of the pattern.

Surprisingly, it can also be seen in Figure 7.39 that pattern bias strength has

168

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Various Imposed Bias Magnitudes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Various Imposed Bias Magnitudes

Figure 7.39: The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for pattern bias amplitudes ranging from
0 (red) to 0.08 (purple).

a clear but temporary effect on correlation lengths in the early-stage solution

development from t = 0.0001 to t = 0.001, where stronger pattern biases en-

courage growth of correlation lengths in all directions, albeit somewhat more

strongly in the pattern-parallel direction. It may be that the spatially cor-

related, directed fluxes created by the patterning bias, combined with the

diffusive interfacial terms in the system, temporarily promote development at

a longer wavelength than the instabilities created by the anti-diffusive process

of phase separation. In any case, these effects of phase separation start to

grow exponentially as the solution perturbation away from an unstable homo-

geneous equibrium grows, and correlation lengths are again suppressed by the

time t = 0.01, only to resume their growth as the separated phases reach their

binodal concentration values and material region coarsening begins.

The effects of pattern bias amplitude on defect count are equally obvi-

ous, as can be seen in Figure 7.40. Stronger patterning bias leads on average to

fewer defects in the end state, faster defect count reduction, and less stochastic

169

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

Time

Pattern Defects for Various Imposed Bias Magnitudes

Figure 7.40: The defect count of the Cahn-Hilliard system plotted against
time, for pattern bias amplitudes ranging from 0 (red) to 0.08 (purple). Lines
are slightly staggered away from integer values to avoid overlap on the graph.

170

variation in the results. One interesting feature of this graph is that it can be

seen that the defect count is not always monotonically decreasing, even in the

late-time evolution of the problem. Weakly and moderately patterned simu-

lations can be seen here to occasionally have new defects form, temporarily or

even permanently.

Temperature The chemical free energy function for a Cahn-Hilliard decom-

position problem is highly dependent on the temperature of the system. As

shown in Figure 7.41, the total free energy available at spinodal points and the

very double-well shape of the free energy diagram depend on temperature. At

high temperatures, the free energy diagram becomes a single-well at which the

most stable concentration is an even mixture. As the temperature is lowered,

the thermodynamic impetus towards phase separation becomes greater and

the final stable binodal concentration values become more distinct.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Concentration

B
ul

k
F

re
e

E
ne

rg
y

D
en

si
ty

Flory−Huggins Free Energy Density

NkT = 0.4
NkT = 0.5
NkT = 0.6
NkT = 0.7
NkT = 0.8
NkT = 0.9

Figure 7.41: The chemical free energy density of the Cahn-Hilliard system
plotted against local concentration, for various temperatures.

One effect of the different chemical free energy functions on the total

free energy is clear: as seen in Figure 7.42, lower temperature systems initially

171

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0.001 0.01 0.1 1 10 100

T
ot

al
 F

re
e

E
ne

rg
y

Time

Free Energy Evolution for Various Temperatures

Figure 7.42: The free energy of the Cahn-Hilliard system plotted against time,
for NkT ranging from 0.5 (red) to 0.9 (purple).

have much higher global free energy content, which provokes earlier phase

separation and more dramatic free energy reduction. Lower temperature sys-

tems are also much more susceptible to stochastic effects, reaching significantly

different end states from different initial perturbations.

The variation of system temperature has a dramatic effect on the rate

of evolution of the system. In Figure 7.43, the low temperature experiments

at NkT = 0.5 display the familiar phases of spinodal decomposition: the de-

velopment of the initial perturbation into an unstable mode, the accelerating

growth of that mode until binodal concentration values are reached, followed

by a random but progressively slowing evolution of the system which is in-

termittently punctuated by higher speed topological change events. As the

system temperature is increased, the observed evolution begins to differ. The

172

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e-08 1e-06 0.0001 0.01 1 100

||d
t c

|| 2

Time

Concentration Rate of Change for Various Temperatures

Figure 7.43: The rate of change of the concentration (in H2 norm) plotted
against time, for NkT ranging from 0.5 (red) to 0.9 (purple).

first differences are quantitative, at NkT = 0.6, where the phase decomposi-

tion is delayed, the random late-term evolution of the problem is shortened,

and the systems reach a steady state earlier. Qualitative differences occur at

NkT = 0.7, where the random “spikes” of sudden late-term topological change

events are not seen at all, but where instead a short random development pe-

riod is followed by a long, smooth decline in change rate. At NkT = 0.8,

even that random development disappears, and the phase decomposition set-

tles down to steady state entirely in a gradual manner. Finally, at NkT = 0.9,

with our miscibility parameter Nω = 1.8 the chemical free energy diagram is

a single well. Here, no phase separation occurs, and the entire evolution of the

system is a smooth readjustment of concentration to approach the spatially

dependent equilibrium mixture values determined by the patterning bias.

173

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Perpendicular Correlation Lengths for Various Temperatures

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10 100

D
is

ta
nc

e

Time

Pattern-Parallel Correlation Lengths for Various Temperatures

Figure 7.44: The horizontal and vertical correlation lengths of the Cahn-
Hilliard system plotted against time, for NkT ranging from 0.5 (red) to 0.9
(purple).

0

1

2

3

4

5

6

7

8

0.0001 0.001 0.01 0.1 1 10 100

D
ef

ec
t C

ou
nt

Time

Pattern Defects for Various Temperatures

Figure 7.45: The defect count of the Cahn-Hilliard system plotted against time,
for NkT ranging from 0.5 (red) to 0.9 (purple). Lines are slightly staggered
away from integer values to avoid overlap on the graph.

174

The effect of these differences on the pattern is plotted in Figures 7.44

and 7.45. At lower temperatures, the more sudden phase decomposition causes

defects to be “fixed” in place. Shorts and breaks in the pattern persist to

the steady state, and the pathways left open between neighboring pattern

lines allow relatively unrestrained growth of pattern-perpendicular correlation

lengths. Higher temperatures give a more gradual decomposition, allowing

concentration to migrate more reliably into the desired pattern; correlation

lengths in the pattern-perpendicular direction are pinned by the pattern fre-

quency, while correlation lengths following the grain of the pattern become

infinite as the solution becomes constant in that direction. At the highest tem-

peratures, however, the “desired pattern” is never fully reached; although the

postprocessing of these solutions detects no shorts or breaks in the NkT = 0.9

pattern, there is also no phase decomposition in the NkT = 0.9 pattern; in-

stead of using a weakly spatially varying imposed pattern to produce sharp

lines of concentration, in these simulations a weakly varying imposed pattern

produces a weakly spatially varying concentration.

One possibility that suggests itself from these results is to carry out

phase decompositions at time-varying temperatures; instead of instantly quench-

ing the mixed film to its final temperature, the temperature could be lowered

gradually to the end state. This raises some interesting control possibilities.

Through appropriate timing of the cooling process, the reliable patterning pro-

duced at high temperatures might be preserved while the pattern sharpening

at lower temperatures is achieved. Even in the absence of deliberate control,

the sensitivity of pattern formation to temperature suggests that the “instan-

taneous quench” assumption of spinodal decomposition should not be applied

175

to the self-patterning problem, but that instead the continuous time history

of quench temperature should be taken into consideration.

7.15 Simulation Performance

In many numerical spinodal decomposition studies in the literature,

the simulation is “cut off” at some time, usually before the length scale of

the coarsening material regions becomes large enough that the effect of the

boundary conditions of the artificially truncated domain becomes a significant

factor.

In patterned decomposition studies, however, the patterning acts to

restrict the length scale of the evolving system, and if the domain size is a

sufficient multiple of the pattern wavelength then it can make sense to consider

the evolution of the physical system out to a steady state, as was done in the

Section 7.14 simulations.

However, solving a Cahn-Hilliard system to steady state can be imprac-

tical with standard uniform time-stepping schemes. With the time-step sizes

required to properly resolve the rapid solution evolution at the beginning of

a spinodal decomposition, hundreds of thousands of steps might be needed to

evolve even a patterned solution to steady state. The first steady state solu-

tions for an unpatterned 3D Cahn-Hilliard problem are found in [68], where

the gains afforded by adaptive time stepping make it feasible to track the slow

late-stage development of the solution.

In these parametric studies, we found similar dramatic gains from the

adaptive time stepping. Using a time integrator error tolerance to control

176

time-step length as described in Section 3.5.1, we see in Figure 7.46 that, in

a typical parametric study, the time-step lengths achieved can grow by sev-

eral orders of magnitude over the course of the simulations. Each simulation

occasionally needs to reduce time-step sizes to properly resolve sudden topolog-

ical changes in the solution, such as merging material regions or evaporating

droplets. These sudden changes are brief, with a general upward trend in

time-step size until a steady state is reached. The specific results of a simu-

lation depend on both the choice of physical parameters and on the random

perturbation in the initial conditions. To give a better idea of the behavior

for an entire parameteric study, Figure 7.47 plots the minimum, mean, and

maximum time step sizes used by the set of simulations in the bias amplitude

study from Section 7.14. The growth in the minimum time-step sizes used

by these simulations is not as dramatic as the growth in the maximum step

sizes attained. However, because the minimum step sizes are constrained by

short intermittent reductions to track topological changes, the plot of average

time-step growth resembles that for the maximums more than the minimums;

an increase of six orders of magnitude in time-step size is observed over the

course of the set of simulations.

The ability to take longer time steps via adaptive step size selection

is not an unequivocal success. In Figure 7.48, the number of nonlinear solver

iterations per time step is plotted. It can be seen that the developing simula-

tion tends to require more nonlinear solver iterations at later time steps. This

appears to be due in part to the increasing length of the time steps themselves,

as the mass matrix component of the nonlinear algebraic system generated for

the time step becomes less important. It can be seen that points in Figure 7.46

177

1e-08

1e-06

0.0001

0.01

1

100

0.0001 0.001 0.01 0.1 1 10 100

T
im

e
S

te
p

Le
ng

th

Time

Adaptive Time Step Lengths for a Patterned Phase Decomposition Simulation

Figure 7.46: The time-step lengths at each point in simulation time for a single
run of a patterned spinodal decomposition problem.

where the time-step length is reduced to meet an error tolerance correspond

to local reductions in nonlinear solver iterations in Figure 7.48.

The overall increase in nonlinear solver steps in this simulation is not

nearly as dramatic as the growth in time step size which it enables. In the

worst case in late time steps, large time-step selection based solely on time in-

tegration error tolerances can lead to problems which are too nonlinear for our

Newton-Krylov solver to quickly solve, and so the solver occasionally “wastes”

its maximum number of iterations before deciding to reduce the time-step

length and start over. Even with this cost, however, the number of nonlinear

steps required does not seem to grow without bound. Figure 7.49 confirms this

bounded behavior, in plots of the minimum, average, and maximum number

of nonlinear solver steps per timestep for the entire set of simulations used in

178

1e-08

1e-06

0.0001

0.01

1

100

0.0001 0.001 0.01 0.1 1 10 100

T
im

e
S

te
p

Le
ng

th

Time

Adaptive Time Step Lengths for Imposed Bias Magnitude Study

Figure 7.47: The minimum, mean, and maximum time-step length at each
point in simulation time, for many Monte Carlo samples and parameter values
in a pattern bias amplitude study.

179

the bias amplitude study. There is a wide variation between minimum and

maximum, but on average the solver requirements are well-behaved.

0

2

4

6

8

10

12

0.0001 0.001 0.01 0.1 1 10 100

Q
ua

si
-N

ew
to

n
S

te
ps

Time

Nonlinear Solver Iterations for a Patterned Phase Decomposition Simulation

Figure 7.48: The number of inexact Newton steps taken at each point in
simulation time for a single run of a patterned spinodal decomposition problem.

The increasing linear solver cost at later timesteps is not as well-

behaved, for two reasons. First, in the early simulation times, there are sharp

jumps in the linear iteration counts, corresponding to points where the nonlin-

ear solver needs to add an additional inexact Newton step and all the additional

Krylov steps that entails. Second, each nonlinear solver step takes as many

linear solver iterations as is necessary to meet the specified residual reduction

tolerance for that step. This is another source of increased computational cost.

In the late stages of the simulations, the number of Krylov steps required per

time step trends generally upward, far more than the growth in the number

of inexact Newton steps. The linear solver performance will obviously be sen-

180

0

2

4

6

8

10

12

0.0001 0.001 0.01 0.1 1 10 100

Q
ua

si
-N

ew
to

n
S

te
ps

Time

Nonlinear Solver Iterations for Imposed Bias Magnitude Study

Figure 7.49: The minimum, mean, and maximum number of inexact Newton
solver steps taken at time steps covering each point in simulation time, for
many Monte Carlo samples and parameter values in a pattern bias amplitude
study.

181

sitive to particular choices of Krylov method and preconditioner type, but in

general this upward trend is expected behavior, as the system Jacobians which

resembled a mass matrix in the earliest time steps evolve to include more of

the ill-conditioned nonlinear and fourth-order terms in late time steps.

Figure 7.51, another plot of minimum, average, and maximum values

over an entire parametric study sample set, shows that this effect is typical.

We should be concerned that increasingly expensive solves at each time step

will act to offset the computational efficiency achieved with longer time steps.

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 1 10 100

K
ry

lo
v

S
te

ps

Time

Linear Solver Iterations for a Patterned Phase Decomposition Simulation

Figure 7.50: The number of Krylov steps taken at each point in simulation
time for a single run of a patterned spinodal decomposition problem.

To discern the combined effect of these factors on our simulations, we

define the “solve rate” to be the number of units of simulation time being

calculated per second of wall clock time. If, during timestep n, the simulation

is advanced from time tn to tn + δtn by a computer which takes s seconds

182

10

100

1000

10000

100000

0.0001 0.001 0.01 0.1 1 10 100

K
ry

lo
v

S
te

ps

Time

Linear Solver Iterations for Imposed Bias Magnitude Study

Figure 7.51: The minimum, mean, and maximum number of total Krylov
solver steps taken during time steps covering each point in simulation time, for
many Monte Carlo samples and parameter values in a pattern bias amplitude
study.

183

to perform all the necessary calculations, then the solve rate is δtn
s

for that

time step. Figure 7.52 plots the solve rate for the same single simulation

as seen in our earlier example plots. Despite the countervailing increases in

solver cost per time step, the predominant effect that can be seen is still a

dramatic improvement in solver efficiency as time-step lengths increase. This

improvement can be seen for an entire parametric study in the minimum,

average, and maximum solve rate plots in Figure 7.53. The minimum solve

rate is always constrained by the potential need to track a late topological

change in a particular solution, but the average solve rate for the set of study

samples still grows dramatically, with an improvement of more than five orders

of magnitude over the course of the simulations.

This parameter study was executed on the Texas Advanced Comput-

ing Center’s supercomputer, Lonestar, using four quad-processor nodes for

each Monte Carlo sample, and running up to 40 samples at a time in parallel.

Although the specific solve rates achieved depend on solver parameters and

hardware choices, the general principle demonstrated is clear: with sufficiently

robust solvers, adaptive time step selection allows phase decomposition simu-

lations to be carried out to very late simulation times without correspondingly

prohibitive cost.

184

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

S
im

ul
at

io
n

T
im

e
pe

r
un

it
C

lo
ck

 T
im

e

Simulation Time

Solve Rate for a Patterned Phase Decomposition Simulation

Figure 7.52: The solver efficiency (expressed as a ratio of simulation time
elapsing to clock time elapsing) at each point in simulation time for a single
run of a patterned spinodal decomposition problem.

185

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0.0001 0.001 0.01 0.1 1 10 100

S
im

ul
at

io
n

T
im

e
pe

r
un

it
C

lo
ck

 T
im

e

Simulation Time

Solve Rate for Imposed Bias Magnitude Study

Figure 7.53: The minimum, mean, and maximum solver efficiency (expressed
as a ratio of simulation time elapsing to clock time elapsing) during time steps
covering each point in simulation time, for many Monte Carlo samples and
parameter values in a pattern bias amplitude study.

186

Chapter 8

Concluding Remarks

The infrastructure developments which were a part of this work have

been added to the public open source libMesh project, made available to

the greater scientific and engineering community via the SourceForge software

repository, where the libMesh library sees hundreds of downloads and thou-

sands of web visits each month. The most generally applicable components,

such as the new object-oriented boundary-value problem framework and its

supporting classes, have already been used in recent research for other appli-

cations [102]. There is also a foundation here to build on for future work with

fourth-order problems.

Tetrahedral Macroelements In two dimensions, the generation of a qual-

ity triangular mesh on an arbitrary domain is essentially a solved problem,

and the triangular macroelements studied here are an excellent way to gener-

ate adaptable C1 conforming bases on such a mesh. Quad meshes and hybrid

quad/triangle meshes are also popular, and it would be straightforward to use

a compatible quadrilateral macroelement such as the Lai quad [90] alongside

the Clough-Tocher triangles implemented for this work.

The Hermite tensor product spaces used for our 3D results are less

ideal; they provide efficient C1 splines on hierarchically adapted Cartesian

187

grids, and can be extended to meshes which are C1 mappings of such grids,

but not every domain can be discretized in this way. Even without such

topology restrictions, quality hexahedral mesh generation is still a difficult

problem, with promising techniques for restricted classes of domains, but open

questions in general [17, 94, 120, 139].

On the other hand, robust algorithms and software are now available

for automatic pure-tetrahedral mesh generation [20, 50, 67, 114], with element

quality dependent only on the limitations of the domain to be meshed and

on the steady improvements in the meshing literature. For a pure tetrahedral

mesh, C1 macroelement solutions exist which are compatible with the non-

conforming hanging node continuity constraint techniques described in Section

3.1. The implementation and testing of these elements in a parallel adaptive

code would require much work and debugging, but would provide a useful

capability, with no real obstacles to reapplying the approaches from this work.

C1 p Refinement Although macroelement construction is motivated by the

challenge of creating a polynomial spline space with high levels of continuity

but low polynomial degree p, for sufficiently smooth problems the improved

convergence rates of high-p elements can be attractive, particularly when com-

bined with mesh refinement in an hp method.

Although the constraint methods of Section 3.1 can be applied to adap-

tive p refinement problems, the constraint process can be made more elegant

(or in purely p refined conforming meshes, avoided altogether) for hierarchic

bases. A simple change of basis (and a corresponding change in degree of

188

freedom functionals) would, for instance, turn the Clough-Tocher-Percell [100]

quartic macrotriangle basis into a strict superset of the Clough-Tocher cubic

basis. Extending to p = 5 and up is relatively straightforward.

Initial support for both adaptive p and hp refinement with p-hierarchic

bases, as well as high p extensions of the Hermite elements, have already been

added to libMesh for experimental purposes alongside the present research

activity.

Coupled Flow/Decomposition For the polymer phase decomposition stud-

ies in this work, the bulk velocity of the material is assumed to be zero, because

in typical experiments the decomposition rate is sufficiently low that coupling

to hydrodynamic effects can be neglected. In more rapid physical processes,

however, the Cahn-Hilliard equation may be coupled to the Navier-Stokes

equations to examine flow in a fluid mixture. This case is found in the liter-

ature using finite rifference [75, 76] and lattice Boltzmann methods [23, 82]; it

would be interesting to compare such work with the results of a conforming

Finite Element formulation.

Self-Patterning Control Problems The results in Section 7.14 suggest a

variety of ways in which the reliability of self-patterning phase decomposition

processes can be influenced by the choice of the physical parameters governing

the system. Some of these parameters, such as film thickness and material

properties, cannot be easily manipulated during the course of an experiment,

but others, such as quenching temperature, can be made subject to fine-tuned

control by the experimenter. There may be tradeoffs between the more rapid

189

phase decomposition which occurs at relatively low quenching temperatures

versus the more reliable pattern self-assembly which we found to occur at rela-

tively high temperatures. Transient simulations of gradually cooling mixtures

could be instructive in determining the effectiveness of utilizing temperature

control to stabilize the decomposition process.

190

Bibliography

[1] S. Adjerid. An a posteriori error estimate for fourth-order boundary

value problems. CMAME, 191:2539–2559, 2002.

[2] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite

Element Analysis. Wiley-Interscience, New York, 2000.

[3] P. Alfeld. A trivariate clough-tocher scheme for tetrahedral data. Com-

puter Aided Geometric Design, 1:169–181, 1984.

[4] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials

in three-dimensional non-smooth domains. Math. Meth. Appl. Sci.,

21:823–864, 1998.

[5] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface

methods in fluid mechanics. Annual Rev. Fluid Mech., 30:139–165,

1998.

[6] G. Awanou and M. Lai. Quintic spline interpolation over tetrahedral

partitions, 2002.

[7] I. Babuska, O. C. Zienkiewicz, J. Gago, and E. R. A. Oliv iera. Accuracy

Estimates and Adaptive Refinements in Finite Element Computations.

Wiley, 1986.

191

[8] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2007.

[9] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for

Differential Equations. Birkhäuser Verlag, 2003.

[10] J. W. Barrett, H. Garcke, and R. Nurnberg. Finite element approxi-

mation of surfactant spreading on a thin film. SIAM J. Numer. Anal,

41(4):1427–1464, 2003.

[11] J. W. Barrett, H. Garcke, and R. Nurnberg. Finite element approxi-

mation of a phase field model for surface diffusion of voids in a stressed

solid. Math. Comp., 75:7–41, 2006.

[12] W. Barth. Simulation of Non-Newtonian Fluids on Workstation Clus-

ters. PhD dissertation, The University of Texas at Austin, 2004.

[13] W. Barth, G. Carey, S. Chow, and B. Kirk. Finite Element Modeling of

Generalised Newtonian Flows. In Proceedings of the 14th Australasian

Fluids Conference, Adelaide, December 2001.

[14] W. L. Barth and G. F. Carey. Extension of the cht-01 natural convection

benchmark problem to non-newtonian fluids. In Proceedings of CHT-04:

ICHMT International Symposium on Advances in Computational Heat

Transfer, Norway, April 2004. ICHMT.

[15] B. Bejanov, J.-L. Guermond, and P. D. Minev. A locally DIV-free pro-

jection scheme for incompressible flows based on non-conforming finite

192

elements. Int. J. Numer. Meth. Fluids, 49:549–568, 2005.

[16] O. B́ıró, K. Preis, and K. R. Richter. On the use of the magnetic vector

potential in the nodal and edge finite element analysis of 3d magneto-

static problems. IEEE Transactions on Magnetics, 32(3):651–654, May

1996.

[17] T. D. Blacker and R. J. Meyers. Seams and wedges in plastering: A 3d

hexahedral mesh generation algorithm. Engineering With Computers,

2(9):83–93, 1993.

[18] W. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase-

field simulation of solidifaction. Annual Review of Materials Research,

32:163–194, 2002.

[19] M. Böltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner. Surface-

induced structure formation of polymer blends on patterned substrates.

Nature, 391:877–879, February 1998.

[20] H. Borouchaki, F. Hecht, E. Saltel, and P. L. George. Reasonably

efficient delaunay based mesh generator in 3 dimensions. In Proceedings

of the 4th International Meshing Roundtable, pages 3–14, October 1995.

[21] R. J. Braun and B. T. Murray. Adaptive phase-field computations of

dendritic crystal growth. Journal of Crystal Growth, 174(1):41–53, 1997.

[22] Richard P. Brent. Algorithms for Minimization without Derivatives.

Prentice-Hall, Englewood Cliffs, N.J., 1973.

193

[23] A. J. Briant and J. M. Yeomans. Lattice Boltzmann simulations of

contact line motion. II. Binary fluids. Physical Review E, 69:031603,

2004.

[24] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Sys-

tems of Equations. SIAM Journal on Scientific and Statistical Comput-

ing, 11(3):450–481, 1990.

[25] J. W. Cahn. On spinodal decomposition. Acta Materialia, 9:795–801,

1961.

[26] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system.

i. interfacial free energy. J. of Chem. Phys., 28(2):258–267, February

1958.

[27] G. F. Carey. A mesh refinement scheme for finite element computations.

Computer Methods in Applied Mechanics and Engineering, 7(1):73–105,

1976.

[28] G. F. Carey. Computational Grids. Taylor& Francis, New York, 1997.

[29] G. F. Carey, M. Anderson, B. Carnes, and B. Kirk. Some aspects of

adaptive grid technology related to boundary an d interior layers. J.

Comp. Appl. Math., 166(1):55–86, 2004.

[30] G. F. Carey and S. S. Chow. Numerical approximation of generalized

Newtonian fluids using Powell-Sabin-Heindl Elements: I. Theoretical es-

timates. Int. J. Numer. Meth. Fluids, 41:1085–1118, 2003.

194

[31] G. F. Carey and J. T. Oden. Finite Elements–An Introduction, Volume

I. Prentice Hall, Englewood Cliffs, NJ, 1981.

[32] G. F. Carey and J. T. Oden. Finite Elements–Mathematical Aspects,

Volume IV. Prentice Hall, Englewood Cliffs, NJ, 1983.

[33] G. F. Carey and J. T. Oden. Finite Elements: Fluid Mechanics, Volume

VI. Prentice Hall, Englewood Cliffs, NJ, 1983.

[34] G. F. Carey and M. Utku. Boundary penalty techniques. J. Comp.

Meth. Appl. Mech. Eng., 30:103–118, 1982.

[35] G. F. Carey and M. Utku. Penalty resolution of the Babuska-circle

paradox. J. Comp. Meth. Appl. Mech. Eng., 41:11–28, 1983.

[36] V. Carey. A Posteriori Error Estimation for the Finite Element Method

via Local Averaging. PhD dissertation, Cornell University, 2005.

[37] C. Castellano and S. C. Glotzer. On the mechanism of pinning in

phase-separating polymer blends. J. Chem. Phys., 103(21):9363–9369,

December 1995.

[38] H. D. Ceniceros and A. M. Roma. A nonstiff, adaptive, mesh refinement-

based method for the Cahn-Hilliard equation. J. Comput. Phys, 225(2):1849–

1862, 2007.

[39] A. Charbonneau, K. Dossou, and R. Pierre. A residual-based a pos-

teriori error estimator for the Ciarlet-Raviart formulation of the first

biharmonic problem. Num. Meth. PDE, 13:93–111, 1997.

195

[40] L.-Q. Chen. Phase-field models for microstructure evolution. Annual

Review of Materials Research, 32:113–140, 2002.

[41] S. M. Choo and S. K. Chung. Conservative nonlinear difference scheme

for the Cahn-Hilliard equation. Computers Math. Applic., 36(7):31–39,

1998.

[42] P. J. Ciarlet. The Finite Element Method for Elliptic Problems. North-

Holland, Amsterdam, 1978.

[43] R. Clough and J. Tocher. Finite element stiffness matrices for analysis

of plates in blending. In Proceedings of Conference on Matrix Methods

in Structural Analysis, 1965.

[44] H. E. Cook. Brownian motion in spinodal decomposition. Acta Metal-

lurgica, 18(3):297–306, March 1970.

[45] H. L. De Cougny and M. S. Shephard. Parallel refinement and coarsen-

ing of tetrahedral meshes. Int. J. Num. Meth. Eng., 46(7):1101–1125,

1999.

[46] S. D. Cramer and J. M. Marchello. Numerical evaluation of models de-

scribing non-Newtonian behavior. AIChE Journal, 14:980–983, Novem-

ber 1968.

[47] M. J. Crochet, A. R. Davies, and K. Walters. Numerical Simulation of

Non-Newtonian Fluid Flow, volume 1. Elsevier, 1984.

[48] S. H. Davis. Rupture of thin liquid films. In R. E. Meyer, editor, Waves

on Fluid Interfaces, pages 291–302. 1983.

196

[49] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Meth-

ods. SIAM Journal on Numerical Analysis, 19(2):400–408, 1982.

[50] H. Edelsbrunner and N. R. Shah. Incremental topological flipping works

for regular triangulations. Algorithmica, 15:223–241, 1996.

[51] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inex-

act Newton method. SIAM Journal on Scientific Computing, 17(1):16–

32, 1996.

[52] C. M. Elliot and D. A. French. Numerical studies of the Cahn-Hilliard

equation for phase separation. IMA J. Appl. Math., 38:97–128, 1987.

[53] C. M. Elliott and D. A. French. A nonconforming finite-element method

for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal.,

26(4):884–903, August 1989.

[54] C. M. Elliott and H. Garcke. On the Cahn-Hilliard equation with de-

generate mobility. SIAM J. Math. Anal., 27(2):404–423, March 1996.

[55] C. M. Elliott and S. Larsson. Error estimates with smooth and nons-

mooth data for a finite element method for the Cahn-Hilliard equation.

Mathematics of Computation, 58(198):603–630, April 1992.

[56] C. M. Elliott and S. Zheng. On the Cahn-Hilliard equation. Arch.

Rational Mech. Anal., 96:339–357, 1986.

[57] H. Emmerich. The Diffuse Interface Approach in Materials Science.

Springer, New York, 2003.

197

[58] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and

R. L. Taylor. Continuous/discontinuous finite element approximations

of fourth-order elliptic problems in structural and continuum mechanics

with applications to thin beams and plates, and strain gradient elasticity.

Comp. Meth. App. Mech. Eng., 191:3669–3750, 2002.

[59] D. J. Estep, M. G. Larson, and R. D. Williams. Estimating the Error of

Numerical Solutions of Systems of Reaction-Diffusion Equations, volume

146. 2000.

[60] D. J. Eyre. Systems of Cahn-Hilliard equations. SIAM J. Appl. Math.,

53(6):1686–1712, December 1993.

[61] F. Fairag. Numerical computations of viscous, incompressible flow prob-

lems using a two-level finite element method. SIAM J. Sci. Comput.,

24(6):1919–1929.

[62] J. E. Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasilakis, editors.

Adaptive Methods for Partial Differential Equations. SIAM, 1989.

[63] P. J. Flory. Thermodynamics of high polymer solutions. J. of Chem.

Phys., 9(8):660, August 1941.

[64] D. Furihata. Finite difference schemes for ∂u
∂t

=
(

∂
∂x

)α δg
δu

that inherit

energy conservation or dissipation property. J. Comp. Phys., 156:181–

205, 1999.

[65] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

198

Wesley, 1995.

[66] H. Garcke, B. Niethammer, M. Rumpf, and U. Weikard. Transient

coarsening behaviour in the Cahn-Hilliard model. Acta Materialia,

51:2823–2830, 2003.

[67] N.A. Golias and T.D. Tsiboukis. An approach to refining three-dimensional

tetrahedral meshes based on Delaunay transformations. Intl. J. Numer.

Meth. Eng., 37:793–812, 1994.

[68] H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric

analysis of the Cahn-Hilliard phase-field model. Computer Methods in

Applied Mechanics and Engineering, submitted, 2007.

[69] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in

practical finite element analysis. Computers and Structures, 83:235–265,

January 2005.

[70] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Ele-

ment Method. John Wiley and Sons, New York, 1998.

[71] M. L. Huggins. Solutions of long chain compounds. J. of Chem. Phys.,

9(5):440, May 1941.

[72] T. J. R. Hughes. The Finite Element Method–Linear Static and Dy-

namic Finite Element Analysis. Dover, Mineola, NY, 1987.

[73] Michael Imamura. Using Doxygen: A quick guide to getting started and

using the Doxygen inline documentation system for documenting source

code. Technical report, Linux Users Group at Georgia Tech, May 2002.

199

[74] S. Iqbal and G. F. Carey. Performance analysis of dynamic load bal-

ancing algorithms with variable number of processors. J. Parallel and

Distributed Computing, 65(8):934–948, 2005.

[75] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-

field modeling. J. Comp. Phys., 155:96–127, 1999.

[76] D. Jacqmin. Contact-line dynamics of a diffuse fluid interface. J. Fluid

Mech., 402:57–88, 2000.

[77] R.-Q. Jia. Approximation order from certain spaces of smooth bivari-

ate splines on a three-direction mesh. Transactions of the American

Mathematical Society, 295(1):199–212, May 1986.

[78] R. A. L. Jones, L. J. Norton, E. J. Kramer, F. S. Bates, and P. Wiltz-

ius. Surface-directed spinodal decomposition. Phys. Review Letters,

66(10):1326–1329, March 1991.

[79] A. Karim, J. F. Douglas, B. P. Lee, S. C. Glotzer, J. A. Rogers, R. J.

Jackman, E. J. Amis, and G. M. Whitesides. Phase separation of ultra-

thin polymer-blend films on patterned substrates. Physical Review E,

57(6):R6273–R6276, June 1998.

[80] D. Kay and R. Welford. A multigrid finite element solver for the Cahn-

Hilliard equation. J. Comp. Phys., 212:288–304, 2006.

[81] D. W. Kelly, J. P. Gago, O. C. Zienkiewicz, and I. Babusk a. A posteriori

error analysis and adaptive processes in the fini te element method: Part

I error analysis. Int. J. Num. Meth. Engng., 19:1593–1619, 1983.

200

[82] V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.-C. Desplat, and P. Bladon.

Inertial effects in three-dimensional spinodal decomposition of a sym-

metric binary fluid mixture: a lattice Boltzmann study. J. Fluid Mech.,

440:147–203, 2001.

[83] D. Kessler, J.-F. Scheid, G. Schimperna, and U. Stefanelli. Study of

a system for the isothermal separation of components in a binary alloy

with change of phase. IMA J. of Appl. Math., 69:233–257, 2004.

[84] E. Khain and L. M. Sander. Generalized Cahn-Hilliard equation for

biological applications. Physical Review E, 77:051129, 2008.

[85] R. C. Kirby. Fiat: A new paradigm for computing finite element basis

functions. ACM Trans. Math. Software, 30(4):502–516, December

2004.

[86] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A

C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simu-

lations. Engineering With Computers, 22(3):237–254, December 2006.

[87] G. Krausch, E. J. Kramer, M. H. Rafailovich, and J. Sokolov. Self-

assembly of a homopolymer mixture via phase separation. App. Phys.

Letters, 64(20):2655–2657, May 1994.

[88] O. A. Ladyzhenskaya. Sixth problem of the millenium: Navier-Stokes

quations, existence and smoothness. Russian Math. Surveys, 58(2):251–

286, 2003.

201

[89] M. Lai and L. Schumaker. Macro-elements and stable local bases for

splines on Clough-Tocher triangulations. Numer. Math, 88:105–119,

2001.

[90] M.-J. Lai. Scattered data interpolation and approximation using bivari-

ate c1 piecewise cubic polynomials. Computer Aided Geometric Design,

13:81–88, 1996.

[91] J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard

fluids and topological transitions. Proc. R. Soc. Lond. A, 454:2617–

2654, 1998.

[92] Message Passing Interface Forum. MPI: A Message Passing Interface.

In Proceedings of Supercomputing ’93, pages 878–883. IEEE Computer

Society Press, 1993.

[93] S. Meyers. Effective C++. Addison-Wesley, Reading, Mass., 1992.

[94] L. Mingwu, S. E. Benzley, G. D. Sjaardema, and T. Tautges. A multiple

source and target sweeping method for generating all-hexahedral finite

element meshes. In 5th International Meshing Roundtable, pages 217–

228, October 1996.

[95] P. Monk. A mixed finite element method for the biharmonic equation.

SIAM J. Numer. Anal., 24(4):737–749, August 1987.

[96] T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Man-

sky, and T. P. Russell. Local control of micdomain orientation in diblock

202

copolymer thin films with electric fields. Science, 273:931–933, August

1996.

[97] B. T. Murray, A. A. Wheeler, and M. E. Glicksman. Simulations of

experimentally observed dendritic growth behavior using a phase-field

model. Journal of Crystal Growth, 154(3-4):386–400, 1995.

[98] V. X. Nguyen and K. J. Stebe. Patterning of small particles by a

surfactant-enhanced Marangoni-Bénard instability. Physical Review

Letters, 88(16):164501, 2002.

[99] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear

Equations in Several Variables. Academic Press, New York, 1970.

[100] P. Percell. On cubic and quartic Clough-Tocher finite elements. SIAM

J. Numer. Anal., 13:100–103, March 1976.

[101] J. Petera and J. F. T. Pittman. Isoparametric Hermite elements. Int.

J. Numer. Meth. Eng., 37(20):3489–3519, October 1994.

[102] J. Peterson. Parallel Adaptive Finite Element Methods for Problems

in Natural Convection. PhD dissertation, The University of Texas at

Austin, 2008.

[103] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximations

on triangles. ACM Trans. Math. Software, 3:316–325, 1977.

[104] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flann ery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, New York, NY, 1988.

203

[105] S. Puri and H. L. Frisch. Surface-directed spinodal decomposition: mod-

elling and numerical simulations. J. Phys.: Condens. Matter, 9:2109–

2133, 1997.

[106] A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, New

York, 1965.

[107] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-

Hill, New York, 1984.

[108] J. N. Reddy and D. K. Gartling. The Finite Element Method in Heat

Transfer and Fluid Dynamics. CRC Press, London, 1994, 2001.

[109] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-

core Processor Parallelism. O’Reilly Media, 2007.

[110] P. J. Roache. Verification and Validation in Computational Science and

Engineering. Hermosa Press, 1998.

[111] M. F. Schatz, S. J. VanHook, W. D. McCormick, J. B. Swift, and H. L.

Swinney. Onset of surface-tension-driven Bénard convection. Physical

Review Letters, 75(10):1938–1941, September 1995.

[112] R. Scheichl. Decoupling three-dimensional mixed problems using divergence-

free finite elements. SIAM J. Sci. Comput., 23(5):1752–1776.

[113] R. F. Service. Patterning electronics on the cheap. Science, 278(5337):383–

384, October 1997.

204

[114] H. Si and K. Gaertner. Meshing piecewise linear complexes by con-

strained delaunay tetrahedralizations. In Proceedings of the 14th Inter-

national Meshing Roundtable, pages 147–163, September 2005.

[115] R. H. Stogner and G. F. Carey. Parametric numerical investigations of

directed pattern self-assembly in phase decomposition of thin films. in

preparation.

[116] R. H. Stogner and G. F. Carey. C1 macroelements in adaptive finite

element methods. Int. J. Numer. Meth. Eng., 70(9):1076–1095, May

2007.

[117] R. H. Stogner, B. S. Kirk, and J. W. Peterson. Data structures and

algorithms for distributed-memory parallel adaptive mesh refinement in

the libMesh library. in preparation.

[118] R. H. Stogner, B. T. Murray, and G. F. Carey. Approximation of Cahn-

Hilliard diffuse interface models using parallel adaptive mesh refinement

and coarsening with C1 elements. Int. J. Numer. Meth. Eng., in press,

2008.

[119] Z. Suo and W. Hong. Programmable motion and patterning of molecules

on solid surfaces. Proc. Nat. Academy of Sciences USA, 101(21):7874–

7879, May 2004.

[120] T. J. Tautges, T. Blacker, and S. A. Mitchell. The whisker weaving

algorithm: A connectivity-based method for constructing all-hexahedral

finite element meshes. Int. J. Numer. Meth. Eng., 39:3327–3349, 1996.

205

[121] K. Thorton, J. Agren, and P. W. Voorhees. Modelling the evolution of

phase boundaries in solids at the meso- and nano-scales. Acta Materi-

alia, 51:5675–5710, 2003.

[122] R. Toral, A. Chakrabarti, and J. D. Gunton. Numerical study of the

cahn-hilliard equation in three dimensions. Physical Review Letters,

60(22):2311–2314, May 1988.

[123] R. Toral, A. Chakrabarti, and J. D. Gunton. Effect of the morphology of

patterns on the scaling functions: off-critical quenches. Physical Review

B, 39(1):901–904, January 1989.

[124] T. Tu, D. R. O’Hallaron, and O. Ghattas. Scalable parallel octree mesh-

ing for terascale applications. In Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, 2005.

[125] R. S. Tuminaro, H. F. Walker, and J. N. Shadid. On Backtracking Fail-

ure in Newton-GMRES Methods with a Demonstration for the Navier-

Stokes Equations. J. Computational Physics, 180:549–558, 2002.

[126] R. L. J. M. Ubachs, P. J. G. Schreurs, and M. G. D. Geers. A nonlocal

diffuse interface model for microstructure evolution of tin-lead solder. J.

Mech. Phys. Solids, 52:1763–1792, 2004.

[127] A. M. P. Valli, G. F. Carey, and A. L. G. A. Coutinho. Control strategies

for timestep selection in simulation of coupled viscous flow and heat

transfer. Comm. Num. Meth. in Eng., 18(2):131–139, 2002.

206

[128] S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L.

Swinney. Long-wavelength instability in surface-tension-driven Bénard

convection. Physical Review Letters, 75(24):4397–4400, December 1995.

[129] S. J. VanHook, M. F. Schatz, J. B. Swift, W. D. McCormick, and H. L.

Swinney. Long-wavelength surface-tension-driven Bénard convection:

experiment and theory. J. Fluid Mech., 345:45–78, 1997.

[130] Žeńı̌sek. Polynomial approximation on tetrahedrons in the finite ele-

ment method. J. Approx. Theory, 7:334–351, 1973.

[131] J.-S. Wang and N. Ida. Eigenvalue analysis in electromagnetic caveties

using divergence-free finite elements. IEEE Transactions on Magnetics,

27(5):3978–3981, September 1991.

[132] Shun-Lien Wang and Robert F. Sekerka. Computation of the dendritic

operating state at large supercoolings by the phase field model. Phys.

Rev. E, 53:3760–3776, 1996.

[133] X. Wang and G. F. Carey. Finite-element simulation of a heated thin

fluid layer. Numerical Heat Transfer, Part A, 45:841–867, 2004.

[134] X. Wang and G. F. Carey. On Marangoni effects in a heated thin

fluid layer with a monolayer surfactant. part I: model development and

stability analysis. Int. J. Numer. Meth. Fluids, 48:1–16, 2005.

[135] X. Wang and G. F. Carey. On Marangoni effects in a heated thin fluid

layer with a monolayer surfactant. part II: finite element formulation

and numerical studies. Int. J. Numer. Meth. Fluids, 48:17–42, 2005.

207

[136] S. H. Weintraub. Differential Forms: A Complement to Vector Calculus.

Academic Press, San Diego, 1997.

[137] G. N. Wells, E. Kuhl, and K. Garikipati. A discontinuous Galerkin

method for the Cahn-Hilliard equation. J. Comp. Phys., 218:860–877,

2006.

[138] A. A. Wheeler, B. T. Murray, and R. J. Schaefer. Computation of

dendrites using a phase field model. Physica D, 66(1-2):243–262, 1993.

[139] D. R. White, L. Mingwu, S. E. Benzley, and G. D. Sjaardema. Auto-

mated hexahedral mesh generation by virtual decomposition. In Pro-

ceedings of the 4th International Meshing Roundtable, pages 165–176,

October 1995.

[140] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini. Three-

dimensional multispecies nonlinear tumor growth - i. model and numer-

ical method. J. Theoretical Biology, in press, 2008.

[141] A. J. Worsey and G. Farin. An n-dimensional Clough-Tocher inter-

polant. Constructive Approximation, 3:99–110, 1987.

[142] A. J. Worsey and B. Piper. A trivariate Powell-Sabin interpolant. Com-

puter Aided Geometric Design, 5:177–186, 1988.

[143] Y. Xingde and C. Xiaoliang. The Fourier spectral method for the Cahn-

Hilliard equation. Appl. Math. and Computation, 171(1):345–357,

December 2005.

208

[144] H.-C. Yu and W. Lu. Dynamics of the self-assembly of nanovoids and

nanobubbles in solids. Acta Materialia, 53:1799–1807, 2005.

[145] P. Zhao, J. C. Heinrich, and D. R. Poirier. Fixed mesh front-tracking

methodology for finite element simulations. Int. J. Num. Meth. Eng.,

61:928–948, 2004.

[146] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery

and a posteriori error estimates. part 1: The recovery technique. Int.

J. Num. Meth. Eng., 33:1331–1364, 1992.

[147] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery

and a posteriori error estimates. part 2: Error estimates and adaptivity.

Int. J. Num. Meth. Eng., 33:1365–1382, 1992.

209

Vita

Roy Hulen Stogner was born in Albuquerque, New Mexico on 6 July

1979, the son of Steve A. Stogner and Jane M. Stogner. He received the

degree of Bachelor of Science in Mechanical Engineering from Rice University

in 2001, and entered graduate study in the Computational Fluid Dynamics

Laboratory at the University of Texas at Austin with the CAM Fellowship.

He is currently a lead developer of the open source libMesh finite element

library. After graduation he will join the Center for Predictive Engineering

and Computational Sciences (PECOS) as a Postdoctoral Fellow.

Permanent address: 7131 Wood Hollow Dr. #146
Austin, Texas 78731

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special

version of Donald Knuth’s TEX Program.

210

